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2nd International Workshop: Constructive Mathematical
Analysis

Some properties of squared Chlodovsky operators

Hüseyin Erhan Altın∗1 and Harun Karslı2

Abstract. The main purpose of this paper is to define a sequence of positive linear
operators by means of the squared Chlodovsky basis functions. As a consequence of some
certain inequalities we state that the second central moments of the constructed operators
are smaller than the corresponding ones of the classical Bernstein-Chlodovsky operators.
Furthermore, we estimate the rate of convergence in terms of the modulus of continuity and
the class of Lipschitz functions.

2020 Mathematics Subject Classifications: 41A25, 41A35, 41A36

Keywords: Chlodovsky operators, Linear positive operators, Rate of convergence

1. Introduction

The basis of the theory of approximation is the theorem discovered by Weierstrass in 1985
and the first constructive proof of this theorem was given by Bernstein [3] in 1912. He
introduced a sequence of polynomials Bm : C [0, 1] → C [0, 1] defined by

(Bmf) (x) =

m∑
k=0

f

(
k

m

)
pm,k(x) , x ∈ [0, 1] ,

where Bernstein basis function is given by

(1) pm,k(x) =

(
m
k

)
xk(1− x)m−k , m ∈ N.

Later it was discovered that Bernstein polynomials have numerous significants properties, so
new applications and generalizations are being found of it. The aim of these generalizations is
to provide appropriate and powerful tools to application areas. One of these generalizations
is the classical Bernstein-Chlodovsky operators are defined for a function f defined on [0,∞)
and bounded on every finite interval [0, b] ⊂ [0,∞) by

(2) (Cmf) (x) =
m∑
k=0

f

(
bm
m

k

)
pm,k

(
x

bm

)
where pm,k denotes as usual as (1) and (bm)∞m=1 is a positive increasing sequence of reals with
the properties

(3) lim
m→∞

bm = ∞ , lim
m→∞

bm
m

= 0.

These operators were introduced by Chlodovsky [4] in 1937 as a generalization of the
Bernstein polynomials (Bmf) (x) on an infinete interval. Although there are many works on
these operators, readers can be find some results, collectively, on Chlodovsky operators in [9].

We can say that the last century has been very productive by means of working with
linear positive operators. However working on squared type operators has become popular
at the last decade. Now we give a look some remarkable studies on this topic. In [5], the
authors obtained a new representation of the sum of the squared Bernstein polynomials and
used it to validate a conjecture asserting that this sum is a convex function. They extended
the result to some other classical approximation operators; Mirakjan-Favard-Szăsz operators,
Meyer-König and Zeller operators and King-type operators. In [6], the authors provided
some estimates of the second central moment of the squared Bernstein polynomials and also
estimated the rate of approximation in terms of the modulus of continuity. In [7] and [8],
the author obtained the Voronovskaya formula for sequence of positive linear operators con-
structed using the squared Bernstein polynomials and studied some aproximation properties
of positive linear operators defined by means of the powered Baskakov basis, respectively. In
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Some properties of squared Chlodovsky operators

[1] and [2], the author(s) derived a complete asymptotic expansion for a sequence of positive
linear approximation operators defined by means of the squared Bernstein basis polynomi-
als, Favard-Szăsz-Mirakjan fundamental functions and Baskakov fundamental functions. Also
they studied the asymptotic properties of operators defined by means of squared Meyer-König
and Zeller fundamental functions. In [10], the authors introduced a family of neural networks
of multivatiate square rational Bernstein operators defined by extending the artificial neural
networks multivariate Bernstein by using square Bernstein polynomials and they studied the
behavior of this neural network. And in [11], the authors defined a sequence of positive linear
operators by means of the squared Szăsz-Mirakjan basis functions and estimated the rate
of convergence in terms of the modulus of continuity and the class of Lipschitz functions.
Furthermore, they showed the comparison and convergence of these operators with the help
of some illustrative graphics.

In the light of these works, we consider the rational functions,

(4) cm,k =
p2m,k
m∑
i=0

p2m,i

, k = 0, 1, ...,m,

and define the positive linear Bernstein-Chlodovsky type rational operators (SCmf) by

(5) (SCmf) (x) =
m∑
k=0

f

(
bm
m

k

)
cm,k

(
x

bm

)
where cm,k defined by (4) and (bm)∞m=1 is a positive increasing sequence of reals with the
properties (3). This work is organized as follows. In the next section, we give some auxiliary
results. And in the final section, we prove the main results which are related with the second
central moments and rate of convergence of these operators.

2. Auxiliary results

In order to prove the main results, the following function will be the essential tool. For
m ∈ N and u ∈ [0, 1] define

(6) gm (u) =

1∫
0

ut(1−ut)m−1

√
t(1−t)

dt

1∫
0

(1−ut)m√
t(1−t)

dt

.

Integration by parts shows that the integrals in (6) are differentiable with respect to the
parameter u. Also define

(7) Mm = sup
u∈[0,1]

gm (u) , m = 1, 2, ...

Lemma 2.1. The sum of squared Bernstein-Chlodovsky basis function satisfies the following
equality

m∑
k=0

p2m,k

(
x

bm

)
=

1

π

1∫
0

(
1− 4 x

bm

(
1− x

bm

)
t
)m

√
t (1− t)

dt

for x ∈ [0, bm] and m ∈ N.

Proof. Since
m∑
k=0

pm,k

(
x

bm

)
eikθ =

(
x

bm
eiθ + 1− x

bm

)m

,

by Parseval’s identity, we have

m∑
k=0

p2m,k

(
x

bm

)
=

1

2π

π∫
−π

∣∣∣∣ xbm eiθ + 1− x

bm

∣∣∣∣2m dθ

=
2

π

π/2∫
0

(
1− 4

x

bm

(
1− x

bm

)
sin2 θ

)m

dθ,

2



Some properties of squared Chlodovsky operators

and with sin2 θ = t, we have

(8)
m∑
k=0

p2m,k

(
x

bm

)
=

1

π

1∫
0

(
1− 4 x

bm

(
1− x

bm

)
t
)m

√
t (1− t)

dt.

□

Lemma 2.2. The second central moment of the operators SCm defined by (5) is given by

(SCm)
(
(t− x)2 ;x

)
=

x

bm

(
1− x

bm

)
gm (u)

with u = 4
(

x
bm

(
1− x

bm

))
∈ [0, 1] and gm (u) is defined by equation (6).

Proof. Starting with the equality

(9)

m∑
k=0

pm,k

(
x

bm

)
e
u
(

x
bm

− k
m

)
eikθ = e

ux
bm

(
x

bm
e−

u
m eiθ + 1− x

bm

)m

and differentiating both sides of (9) with respect to u, and taking u = 0, we obtain

m∑
k=0

pm,k

(
x

bm

)(
x

bm
− k

m

)
eikθ =

x

bm

(
x

bm
eiθ + 1− x

bm

)m−1( x

bm
eiθ − eiθ + 1− x

bm

)
.

Using Parseval’s equality, we have
(10)

m∑
k=0

p2m,k

(
x

bm

)(
x

bm
− k

m

)2

=
8
(

x
bm

(
1− x

bm

))2
π

π/2∫
0

(
1− 4

x

bm

(
1− x

bm

)
sin2 θ

)m−1

sin2 θdθ.

Here, taking sin2 θ = t in (10), we obtain

(11)
m∑
k=0

p2m,k

(
x

bm

)(
x

bm
− k

m

)2

=
4
(

x
bm

(
1− x

bm

))2
π

1∫
0

(
1− 4 x

bm

(
1− x

bm

)
t
)m−1

√
t (1− t)

tdt.

With u = 4
(

x
bm

(
1− x

bm

))
∈ [0, 1], and from (5), (11) with (8), we have

(12) (SCm)
(
(t− x)2 ;x

)
=

x

bm

(
1− x

bm

)
gm (u)

which completes the proof. □

3. Main results

Theorem 3.1. The following inequality

(13)
1

2b2m

x (bm − x)

m
≤ (SCm)

(
(t− x)2 ;x

)
,

is valid for all x ∈ [0, bm] and m ≥ 1.

Proof. Since 1√
t(1−t)

=
(
2 arcsin

√
t
)′
, using integration by parts, we obtain

1∫
0

(1− ut)m√
t (1− t)

dt = 2

1∫
0

(1− ut)m
(
arcsin

√
t
)′

dt

= (1− u)m π + 2mu

1∫
0

(1− ut)m−1 arcsin
√
tdt

= (εm (u) + 1) 2mu

1∫
0

(1− ut)m−1 arcsin
√
tdt(14)

3



Some properties of squared Chlodovsky operators

where

εm (u) =
(1− u)m π

2mu
1∫
0

(1− ut)m−1 arcsin
√
tdt

<
(1− u)m π

2mu
1∫
0

(1− u)m−1 arcsin
√
tdt

=
2 (1− u)

mu
,(15)

for u ∈ [0, 1] and m ≥ 1. From (14), using the inequality

arcsin
√
t ≤ t√

t (1− t)
, t ∈ [0, 1) ,

we obtain

(16)

1∫
0

(1− ut)m√
t (1− t)

dt ≤ (εm (u) + 1) 2mu

1∫
0

t (1− ut)m−1√
t (1− t)

dt.

From (16) and (15), we deduce that:

mgm (u) ≥ 1

2 (εm (u) + 1)
≥ 1

2
(
2(1−u)
mu + 1

)
hence

mgm (u) ≥ 1

2
− 1− u

2 + (n− 2)u
=

1

2
−

1− 4
(
1− x

bm

)
x
bm

2
(
1 + 2 (n− 2)

(
1− x

bm

)
x
bm

) ,
with u := 4

(
x
bm

(
1− x

bm

))
∈ [0, 1] and m = 1, 2, .... Finally, in virtue of (12), we obtain:

m (SCm)
(
(t− x)2 ;x

)
=

x

bm

(
1− x

bm

)
mgm (u)

≥
x
bm

(
1− x

bm

)
2

−
x
bm

(
1− x

bm

)(
1− 4

(
1− x

bm

)
x
bm

)
2
(
1 + 2 (n− 2)

(
1− x

bm

)
x
bm

)
and the proof is complete. □

Corollary 3.2. The second central moments of the operators SCm defined by (5) satisfy the
following inequalities:

(17)
1

2b2m

x (bm − x)

m
≤ (SCm)

(
(t− x)2 ;x

)
≤ p Mp

x (bm − x)

m
,

(SCm)
(
(t− x)2 ;x

)
≤ p Mp (Cm)

(
(t− x)2 ;x

)
for x ∈ [0, bm] and 1 ≤ p ≤ m.

Proof. Using (12) and (7), we have

(SCm)
(
(t− x)2 ;x

)
=

x

bm

(
1− x

bm

)
gm (u)

≤ Mm
x

bm

(
1− x

bm

)
≤ p Mp

x (bm − x)

m

≤ p Mp (Cm)
(
(t− x)2 ;x

)
(18)

for all 1 ≤ p ≤ m. Putting together (13) and (18), we get the desired result which states that

the second central moments (SCm)
(
(t− x)2 ;x

)
of the operators SCm are of order exactly

4
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x(bm−x)
m , and are smaller than the corresponding ones of the classical Bernstein-Chlodovsky

operators. □

In the approximation of a function by positive linear operators not only the convergence of
operators is required but also the speed of convergence is important. The rate of convergence
depends on the smoothness properties of the function and appropriate tool for estimating
the smoothness of function are represented by modulus of continuity. We compute the rate
of convergence of the constructed operators in terms of modulus of continuity and class of
Lipschitz function.

Theorem 3.3. For any f ∈ CB [0,∞) (space of all bounded and continuous functions on
[0,∞)), we have the estimate

|(SCm) (f ;x)− f (x)| ≤
(
1 +

√
p Mp

)
ω

(
f ;

√
x (bm − x)

m

)
where 1 ≤ p ≤ m, Mm is given by (7) and ω (f ; .) is the modulus of continuity.

Proof. Since

|(SCm) (f ;x)− f (x)| =

∣∣∣∣∣
m∑
k=0

f

(
bm
m

k

)
cm,k

(
x

bm

)
− f (x)

∣∣∣∣∣
≤

m∑
k=0

cm,k

(
x

bm

) ∣∣∣∣f (bm
m

k

)
− f (x)

∣∣∣∣ ,
by using Cauchy-Schwartz inequality and the property

|f (t)− f (x)| ≤ ω (f ; δ)

(
1 +

|t− x|
δ

)
,

we get

|(SCm) (f ;x)− f (x)| ≤
m∑
k=0

cm,k

(
x

bm

){
1 +

1

δ

∣∣∣∣bmm k − x

∣∣∣∣}ω (f ; δ)

≤

1 +
1

δ

(
m∑
k=0

cm,k

(
x

bm

)(
bm
m

k − x

)2
)1/2( m∑

k=0

cm,k

(
x

bm

))1/2
ω (f ; δ)

≤
{
1 +

1

δ

(
(SCm)

(
(.− x)2 ;x

))1/2
((SCm) (1;x))1/2

}
ω (f ; δ) .

Using the fact that (SCm) (1;x) = 1 and (17), we have

|(SCm) (f ;x)− f (x)| ≤

{
1 +

1

δ

(
p Mp

x (bm − x)

m

)1/2
}
ω (f ; δ) ,

choosing δ =

√
x(bm−x)

m , we obtain the result. □

Corollary 3.4. For any f ∈ CB [0,∞), the sequence of operators (SCmf)m∈N converges
uniformly to f on [0,∞).

Theorem 3.5. Let f ∈ CB [0,∞), M > 0 and 0 < µ ≤ 1, then

|(SCm) (f ;x)− f (x)| ≤ M (δm (x))
µ
2

for each f ∈ LipM (µ) = {f : |f (η1)− f (η2)| ≤ M |η1 − η2|µ , η1, η2 ∈ [0,∞)} and for δm (x) =

(SCm)
(
(t− x)2 ;x

)
Proof. We prove this theorem by using the definition of Lipschitz function and Hölder’s
inequality.

|(SCm) (f ;x)− f (x)| ≤ SCm (|f (t)− f (x)| ;x)
≤ M SCm (|t− x|µ ;x) .
5
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Therefore

|(SCm) (f ;x)− f (x)| ≤ M

m∑
k=0

cm,k

(
x

bm

) ∣∣∣∣bmm k − x

∣∣∣∣µ

≤ M
m∑
k=0

(
cm,k

(
x

bm

)) 2−µ
2
(
cm,k

(
x

bm

))µ
2
∣∣∣∣bmm k − x

∣∣∣∣µ

≤ M


(

m∑
k=0

cm,k

(
x

bm

)) 2−µ
2
(

m∑
k=0

cm,k

(
x

bm

) ∣∣∣∣bmm k − x

∣∣∣∣2
)µ

2


= M

(
(SCm)

(
(.− x)2 ;x

))µ
2
.

Choosing δm ( x) = (SCm)
(
(.− x)2 ;x

)
, proof is completed. □
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2nd International Workshop: Constructive Mathematical
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On new means generated by inverse of
eigenfunctions of (p, q)-Laplacian

Barkat Ali Bhayo∗1 and József Sándor2

Abstract. In this paper, we generalize Neuman-Sándor mean M and Seiffert mean P as
an application of the inverse of eigenfunctions generalized hyperbolic functions with two pa-
rameters. Moreover, two-sided inequalities involving these generalized means are established.

2020 Mathematics Subject Classifications: 34L10, 33E05, 33C75.

Keywords: Generalized trigonometric functions, hypergeometric functions, p-Laplacian,
logarithmic mean, two Seiffert means.

1. Introduction

In 1879, Lindberg [17] originally introduced generalized trigonometric functions. In 1995,
Lindqvist [18] also introduced these functions, his work was highly cited by several authors.
The recent literature on these functions includes several dozens of papers. These functions
were used to study problems of existence, bifurcation and oscillation of solutions of differential
equations, applications to differential equations involving the p-Laplacian, simple generaliza-
tion of the classical trigonometric and hyperbolic functions, generalization of elliptic integrals
of the first and the second kind, and generalization of means of two variables. The reader is
referred to see [5, 7, 6, 11, 14, 27, 29, 31] and the bibliography therein.

The Gaussian hypergeometric function is defined by

F (a, b; c; z) = 2F1 (a, b; c; z) =

∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1,

where (a, n) denotes the shifted factorial function

(a, n) = a(a+ 1)(a+ 2) . . . (a+ n− 1), n = 1, 2, 3, . . . ,

and (a, 0) = 1 for a ̸= 1. The reader is referred to see [4] for the applications of Gaussian
hypergeometric function in various fields of the mathematical and natural sciences.

Special functions, such as classical gamma function Γ, the digamma function ψ and the
beta function B(. , .) have close relation with hypergeometric function. For x, y > 0, these
functions are defined by

Γ(x) =

∫ ∞

0
e−ttx−1 dt, ψ(x) =

Γ
′
(x)

Γ(x)
, B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
,

respectively. The hypergeometric function can be represented in the integral form as follows

(1) F (a, b; c; z) =
Γ(c)

Γ(b)(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt.

The eigenfunction sinp of the so-called one-dimensional p-Laplacian problem [15]

−∆pu = −
(
|u′|p−2u′

)′
= λ|u|p−2u, u(0) = u(1) = 0, p > 1,

is the inverse function of Fp : [0, 1] →
[
0,

πp

2

]
, defined as

Fp(x) = arcsinp(x) =

∫ x

0
(1− tp)

− 1
pdt,

where

πp = 2arcsinp(1) =
2

p

∫ 1

0
(1− s)

− 1
p s

1
p
−1
ds =

2

p
B

(
1− 1

p
,
1

p

)
=

2π

p sin
(
π
p

) .
7
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The function arcsinp is called the generalized inverse sine function, and its inverse function
sinp : [0, πp/2] → [0, 1] is called generalized sine function. For x ∈ [πp/2, πp], one can extends
the function sinp to [0, πp] by defining sinp(x) = sin(πp − x), and further extension can be
achieved on R by oddness and 2π-periodicity. The range of p is restricted to (1,∞) because
only in this case sinp(x) can be made periodic like usual sine function.

Similarly, the other generalized inverse trigonometric and hyperbolic functions arccosp :
(−1, 1) → (−ap, ap) , arctanp : (−∞,∞) → (−ap, ap), arcsinhp : (−∞,∞) → (−∞,∞), arctanhp :
(−1, 1) → (−∞,∞) are defined as follows

(2)
arccosp(x) =

∫ (1−xp)
1
p

0
(1− |t|p)−

1
pdt, arctanp(x) =

∫ x

0
(1 + |t|p)−1dt,

arcsinhp(x) =

∫ x

0
(1 + |t|p)−

1
pdt, arctanhp(x) =

∫ x

0
(1− |t|p)−1dt,

where ap = πp/2. Above inverse generalized trigonometric and hyperbolic functions coincide
with usual trigonometric and hyperbolic functions for p = 2.

Generalization of means with two parameters: For two positive real numbers a and b, we
define arithmetic mean A, geometric mean G, logarithmic mean L, two Seiffert means P and
T , and Neuman-Sándor mean M introduced in [21] as follows,

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

L = L(a, b) =
a− b

log(a)− log(b)
, a ̸= b,

P = P (a, b) =
a− b

2arcsin
(
a−b
a+b

) ,
T = T (a, b) =

a− b

2arctan
(
a−b
a+b

) ,
M =M(a, b) =

a− b

2arcsinh
(
a−b
a+b

) .
Neuman [23, 24] generalized the logarithmic mean L, two Seiffert means P and T , and the

Neuman-Sándor mean M by introducing the the p-version of the Schwab-Borchardt mean
SBp as follows

Lp = Lp(a, b) = SBp(Ap/2, G) =
Ap/2vp

arctanhp(vp)
,

Pp = Pp(a, b) = SBp(G,Ap/2) =
Ap/2vp

arcsinp(vp)
,

Tp = Tp(a, b) = SBp(Ap/2, Ap) =
Ap/2vp

arctanp(vp)
,

Mp =Mp(a, b) = SBp(Ap, Ap/2) =
Ap/2vp

arcsinhp(vp)
,

where

SBp(a, b) = b F

(
1

p
,
1

p
; 1 +

1

p
, 1−

(a
b

)p)−1

,

vp =
|xp/2 − yp/2|
xp/2 + yp/2

,

and Ap = Ap(a, b) is a power mean of order p.
Motivated by the work of Neuman, Bhayo and Sándor gave a natural and new generaliza-

tion of L, P, T and M in [10, Theorem 2.1] by utilizing the generalized trigonometric and
generalized hyperbolic functions as follows:

8
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For p ≥ 2 and a > b > 0, the following functions define a mean of two variables a and b

(3)

P̃p = P̃p(a, b) =
a− b

2arcsinp

(
a−b
a+b

) =
x

arcsinp(x)
A =

A

F
(
1
p ,

1
p ; 1 +

1
p ;x

p
) ,

T̃p = T̃p(a, b) =
a− b

2arctanp

(
a−b
a+b

) =
x

arctanp(x)
A =

A · (1 + xp)1/p

F
(
1
p ,

1
p ; 1 +

1
p ;

xp

1+xp

) ,
L̃p = L̃p(a, b) =

a− b

2artanhp

(
a−b
a+b

) =
x

artanhp(x)
A =

A

F
(
1, 1p ; 1 +

1
p ;x

p
) ,

M̃p = M̃p(a, b) =
a− b

2arsinhp

(
a−b
a+b

) =
x

arsinhp(x)
A =

A · (1 + xp)1/p

F
(
1, 1p ; 1 +

1
p ;

xp

1+xp

) ,
where x = (a− b)/(a+ b).

In [27], generalized inverse trigonometric function arcsinp was extended for two parameters
p, q > 1 as follows,

arcsinp,q(x) =

∫ x

0
(1− tq)

− 1
pdt,

for x ∈ (0, 1).

Letting t = z1/q, we observe that

arcsinp,q(x) =
1

q

∫ xq

0
z1/q−1(1− z)−1/pdz =

1

q
B̃

(
1

q
, 1− 1

p
, xq

)
,

where B̃(a, b, x) is incomplete beta function defined as

B̃(a, b, x) =

∫ x

0
ta−1(1− t)b−1dt.

The function arcsinp,q(x) is the inverse function of sinp,q, defined on the the interval
[0, πp,q/2], where

πp,q = 2arcsinp,q(1) =
2

q
B

(
1− 1

p
,
1

q

)
=

2π

q sin
(
π
p

) .
For T = πp,q the function u(t) = sinp,q(t) is a solution to the following problem considered
by Drábek and Manásevich Let ϕp(x) = |x|p−2x. For T, λ > 0 and p, q > 1{

(ϕp(u
′))′ + λϕq(u) = 0, t ∈ (0, T ),

u(0) = u(T ) = 0.

For x ∈ (0, 1), we also define arccosp,q(x) = arcsinp,q((1− xp)1/q), and

cosp,q(x) =
d

dx
sinp,q(x), x ∈ [0, πp,q/2].

Letting y = sinp,q(x), we get cosp,q(x) = (1− (sin(x)q))1/p and

| cosp,q |p + | sinp,q |q = 1 .

Similarly, the generalized tangent function is defined as tanp,q = (sinp,q(x))/(cosp,q(x)), and
its inverse is denoted by arctanp,q, see [9].

Motivated by the work of Takeuchi [27], Bhayo and Vuorinen [11] defined the generalized
inverse hyperbolic sine function arcsinhp,q as follows

arcsinhp,q(x) =

∫ x

0
(1 + tq)

− 1
pdt = xF

(
1

p
,
1

q
; 1 +

1

q
;xq
)
,

for x ∈ (0, 1). In similar fashion, generalized hyperbolic cosine and tangent function are
defined by

coshp,q(x) =
d

dx
sinhp,q(x), tanhp,q(x) =

sinhp,q(x)

coshp,q(x)
, x ≥ 0,

and the inverse of tanhp,q is denoted by arctanh. If follows from the definition that

| coshp,q |p − | sinhp,q |q = 1 .
9
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In [11], it was proved that for p, q > 1 and x ∈ (0, 1) one has

(4) x

(
1 +

xq

p(1 + q)

)
< arcsinp,q(x) < min{πp,q

2
, (1− xq)−1/(p(1+q))x}

(5)

(
xp

1 + xq

)1/p

rp,q(x) < arcsinhp,q(x) <

(
xp

1 + xq

)1/p

sp,q(x),

where

rp,q(x) = max

{(
1− qxq

p(1 + q)(1 + xq)

)−1

, (1 + xq)1/p
(
pq + p+ qxq

p(1 + q)

)−1/q
}

and sp,q(x) = (1− xp/(1 + xq))−q/(p(1+q)).
It is easy to observe that (p, q)-functions reduce to p-functions for p = q, and πp,q to πp.

It follows from definition that πp,q ≤ πp for q ≥ p > 1.

1.1. Preliminaries.

Lemma 1.1. [3, Theorem 2] For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous

on [a, b], and be differentiable on (a, b). Let g
′
(x) ̸= 0 on (a, b). If f

′
(x)/g

′
(x) is increasing

(decreasing) on (a, b), then so are

f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f
′
(x)/g

′
(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 1.2. [9] For p, q > 1, the following inequalities hold true,

(1)
x

arcsinp,q(x)
<

sinp,q(x)

x
, x ∈ (0, 1),

(2)
x

arcsinhp,q(x)
<

sinhp,q(x)

x
, x ∈ (0,∞),

(3)
x

arctanp,q(x)
<

tanp,q(x)

x
, x ∈ (0, 1),

(4)
x

arctanhp,q(x)
<

tanhp,q(x)

x
, x ∈ (0, 1).

For easy reference we recall some well-known inequalities from the literature as follows.
Cauchy-Bouniakowski inequality. If f, g : [a, b] → R are integrable, then

(6)

(∫ b

a
f(x)g(x)dx

)2

≤
∫ b

a
f(x)2dx

∫ b

a
g(x)2dx.

Pólya-Szegő inequality. If f, g : [a, b] → R are integrable, and for all x ∈ [a, b]

0 < α < f(x) < A, 0 < β < g(x) < B,

then

(7)

∫ b
a f(x)

2dx
∫ b
a g(x)

2dx(∫ b
a f(x)g(x)dx

)2 ≤ K(α,A, β,B),

where

K = K(α,A, β,B) =
1

4

(√
AB

αβ
+

√
αβ

AB

)2

.

Minkowski’s inequality. Let f, g : [a, b] → R be integrable and f, g > 0. Write

ht(f) =

(∫ b

a
f(x)tdx

)1/t

.

Then one has

(8) ht(f + g) ≤ ht(f) + ht(g), for t ≥ 1,

(9) ht(f + g) ≥ ht(f) + ht(g), for t ≤ 1.
10
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Diaz-Metcalf inequality. Let f, g : [a, b] → R be integrable and suppose that there exist
constants m and M such that

m ≤ g(x)/f(x) ≤M.

Then one has

(10)

∫ b

a
g2(x)dx+m ·M ·

∫ b

a
f2(x)dx ≤ (m+M) ·

∫ b

a
f(x)g(x)dx.

The paper is organized as follows. In section 1, we give the definition of the special functions
involved in our formulation of the main results, and definition of generalized means with
one parameter and the statement their previous results. Few lemmas and some well-known
inequalities are given in the subsection (‘preliminaries). In section 2, we give the definition
of the generalized means with two parameters and the statement of the main results in the
form of theorems. Section 3 is consisting of the proof of theorems. In Section 4, we present
a conjecture.

2. Main results

The mean P̃p and M̃p can be further generalized for two parameters p, q ≥ 2 as follows,

(11)

P̃p,q = P̃p,q(a, b) =
a− b

2arcsinp

(
a−b
a+b

) =
x

arcsinp,q(x)
A,

M̃p,q = M̃p,q(a, b) =
a− b

2arsinhp

(
a−b
a+b

) =
x

arsinhp,q(x)
A

T̃p,q = T̃p(a, b) =
a− b

2arctanp,q

(
a−b
a+b

) =
x

arctanp,q(x)
A

L̃p,q = L̃p(a, b) =
a− b

2artanhp,q

(
a−b
a+b

) =
x

artanhp,q(x)
A,

where x = (a− b)/(a+ b) with 0 < b < a. Clearly, for p = q we have P̃p,p = P̃p, M̃p,p = Mp,

T̃p,p = Tp, and L̃p,p = Lp For p = 2, P̃2 = P, T̃2 = T, L̃2 = L, M̃2 =M, T̃2 = T, and L̃2 =M .

Theorem 2.1. For p, q ≥ 2 and a > b > 0, the function P̃p,q and M̃p,q define a mean function
of two variables a and b.

Theorem 2.2. For 2 ≤ p < q and x = (a− b)/(a+ b) with 0 < b < a, we have

(12) Pp,qMp,q ≤ (P2p,2q)
2 ≤ k(x, p, q)Pp,qMp,q,

where

k(x, p, q) =
((1 + xq)2/p + (1− xq)2/p)2

4((1− x2q)1/p
.

Theorem 2.3. For a > b > 0 and x = (a− b)/(a+ b), we have

(13)
1

P̃p,q

+
r

M̃p,q

≤ r(p, q, x) + 1

P̃2p,2q

,

(14) (P̃2p,2q)
2p

(
1

(P̃p,q)p
+

1

(M̃p,q)p

)
≤ R(p, q, x),

where

r(p, q, x) =
(1 + xq)

(1− xq)

1/(2p)

,

R(p, q, x) = [(1− x2q)1/(2p) + (1− x2q)−1/(2p)]1/(2p)/22p−1.
11
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3. Proof of main results

Proof of Theorem 2.1. Clearly, for t ∈ (0, 1) and 2 < p < q, the following inequality∫ x

0
(1 + tq)−1/pdt <

∫ x

0
(1− tq)−1/pdt

implies

(15) P̃p,q < M̃p,q.

Similarly, for t ∈ (0, 1) and 2 < p < q the inequality∫ x

0
(1 + tq)−1/pdt <

∫ x

0
(1 + tp)−1/pdt

and ∫ x

0
(1− t−q)−1/pdt >

∫ x

0
(1− t−p)−1/pdt

yield

(16) M̃p,q > M̃p and P̃p,q < P̃p.

Since P̃p,q is a mean, by (15) to prove that M̃p,q is a mean, it is sufficient to find an upper

bound for M̃p,q, which is a mean.

Let Q = Q(a, b) =
√

(a2 + b2)/2. Let (a− b)/(a+ b) = x. Then it is easy to see that one
has the following identity:

(17) Q/A =
√

1 + x2.

Now, since
A

M̃p,q

=
1

x

∫ x

0
(1 + tq)−1/pdt.

Therefore, by (17), to prove that A/Q <= A/M̃p,q, it is sufficient to prove that

(18) (1 + tq)1/q ≤ (1 + x2)1/2.

For q ≥ 2 and t ∈ [0, 1], we have

(1 + tq)1/p ≤ (1 + t2)1/p ≤ (1 + x2)1/p ≤ (1 + x2)1/2,

so (18) follows. This implies that A/M̃p,q ≥ A/Q, so

(19) M̃p, q ≤ Q.

By (15) an (19) it follows that M̃p,q is also a mean. □
An other proof of P̃p,q mean. By definition, we have

P̃p,q

A
=

2z

arcsinp,q(z)
,

where z = (x− y)/(x+ y) and x > y. Now, from the inequalities

x < arcsinp,q(t) <
πp,q
2
x,

we get the double inequality:

(20)
2

πp,q
A < P̃p,q < A,

assume that αp,q ≥ 2. Now, by Jordan’s inequality sinx > (2/π)x > x/2, we get πp,q ≤ πp <
4. Let 0 < y < x. Then from (20) we get

y < P̃p,q < x,

where the right hand side is trivial, as A = (x + y)/2 < x, and for the left hand side,

(2/πp,q)A > (4/πp,q)y > y, by πp,q < 4. This implies that P̃p,q is a mean. □
The proof of the following corollary follows immediately from Lemma 1.2.

Corollary 3.1. For 0 < y < x, we have

(1) P̃p,q(x, y) < 2 sinp,q

(
x− y

x+ y

)
A2

x− y
, 2 ≤ p < q,

12



On new means with two parameters

(2) M̃p,q(x, y) < 2 sinhp,q

(
x− y

x+ y

)
A2

x− y
, 2 ≤ p < q,

Proof of Theorem 2.2. Let f(t) =
√
F (t) and g(t) =

√
G(t) in Cauchy-Bouniakowski

inequality (6), where F (t), G(t) > 0. Put [a, b] = [0, x], then one gets the inequality:

(21)

(∫ x

0

√
F (t)G(t)dt

)2

≤
∫ x

0
F (t)dt ·

∫ x

0
G(t)dt.

With the same notations, from the Pólya-Szegö inequality (7) one gets:

(22) k(x, p)

(∫ x

0

√
F (t)G(t)dt

)2

≥
∫ x

0
F (t)dt ·

∫ x

0
G(t)dt,

here k(x, p) is as defined in Theorem 2.2. Let now f(t) = (1− tp)−1/p and g(t) = (1+ tp)−1/p.
From (21) and (22) one obtains

(23) arcsin2p(x)
2 ≤ arcsinp(x) arcsinhp(x),

and

(24) arcsinp(x) arcsinhp(x) ≤ k(x, p)arcsin2p(x)
2,

respectively. By definition, inequality (23) and (24) imply the proof of left hand-side and
right-hand side of (12), respectively. □

Proof of Theorem 2.3. Apply the Diaz-Metcalf inequality (10) for f(t) =
√
F (t), g(t) =√

G(t), [a, b] = [0, x], yielding∫ x

0
Gdt+M ·m ·

∫ x

0
Fdt ≤ (M +m) ·

∫ x

0

√
FGdt.

Let F (t) = (1 + tq)−1/p, G(t) = (1− tq)−1/p. Here G(t)/F (t) = ((1 + tq)/(1− tp))1/p, which
is strictly increasing. Thus

m = 1 ≤
√
F/G ≤ ((1 + xq)/(1− xq))1/(2p) =M.

One obtains

(25) arcsinp(x) +M · arcsinhp,q(x) ≤ (M + 1)arcsin2p,2q(x),

this implies the proof of (13).
Let [a, b] = [0, x] and f(t) = (1 + tq)−1 and g(t) = (1− tq)−1. As f(t) + g(t) = 2/(1− t2q),

applying the Minkowski inequality (9) for t = 1/p, p > 1, we get

(26) arcsinp,q(x)
p + arcsinhp,q(x)

p ≤ 2

(∫ x

0
A2dt

)p

,

where A(t) = 1/(1− t2q)1/(2p). Clearly,
∫ x
0 A(t)dt = arcsin2p,2q(x), so for obtaining an upper

bound for
∫ x
0 A(t)

2dt, we apply the Pólya-Szegő inequality for f(t) = 1/(1 − t2q)1/p and

g(t) = 1. Since in this case one has 1 ≤ f(t) ≤ 1/(1− x2q)1/p, we get from (7)∫ x

0
A(t)2dt ≤ arcsin2p,2q(x)

2R(x, p, q),

By using (26), finally we get

(27)
xq(arcsinp(x)

p + arcsinhp(x)
p)

arcsin2p,2q(x)2p
≤ R(p, q, x),

this implies inequality (14). □

Corollary 3.2. For 2 ≤ p < q, x = (a − b)/(a + b) and A = (a + b)/2 with 0 < b < a, we
have

(28)
xA

min{πp,q

2 , (1− xq)−1/(p(1+q))x}
< P̃p,q <

A(
1 + xq

p(1+q)

)
(29)

(1 + xq)1/pA

sp,q(x)
< M̃p,q <

(1 + xq)1/pA

rp,q(x)
,

where rp,q(x) and rp,q(x) are as in (4).

Proof. Proof follows easily from (28) and (28). □
13
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4. Conclusion

In this short paper we generalized the Seiffert mean P and Neuman-Sádor mean M with
two parameters in the form of Theorem 2.1, and proved some inequalities involving these
means. We finish the paper by posing the following conjecture.

Conjecture 4.1. For p, q ≥ 2 and x = (a−b)/(a+b) with 0 < b < a, the following functions

L̃p,q = L̃p,q(a, b) =
a− b

2arctanhp,q

(
a−b
a+b

) =
x

arctanhp,q(x)
A,

T̃p,q = T̃p,q(a, b) =
a− b

2arctanp,q

(
a−b
a+b

) =
x

arctanp,q(x)
A,

define a mean functions of two variables a and b, where arctanhp,q and arctanp,q are the
inverse functions of tanhp,q and tanp,q, respectively.

References

[1] Abramowitz M., I. Stegun I., (1965), Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables, National Bureau of Standards, Dover, New York.

[2] Anderson G.D., Vamanamurthy M.K. and Vuorinen M., (1997), Conformal Invariants, Inequalities and
Quasiconformal Maps, J. Wiley.

[3] Anderson G.D., Vamanamurthy M.K. and Vuorinen M., (2006), Monotonicity Rules in Calculus, Amer.
Math. Month. 113 (9) (2006) 805-816.

[4] Askey R., (1989), Handbooks of special functions, A Century of Mathematics in America, Part III (P.
Duren, ed.), Amer. Math. Soc, Providence, RI, 369-391.
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[7] Baricz Á., Bhayo B.A. and Klén K., (2015), Convexity properties of generalized trigonometric and hy-
perbolic functions, Aequat. Math. 89, 273-284.

[8] Bhayo B.A, Sándor J., (2014), On two new means of two variables II, Notes Number Th. Discr. Math.
20 (4) 1-10.

[9] Bhayo B.A, Sándor J., (2013), Inequalities connecting generalized trigonometric functions with their
inverses, Issues of Analysis 2(20) 82-90.

[10] Bhayo B.A , Sándor J., (2019), On certain new means generated by generalized trigonometric functions,
Tbilisi Math. J. 12(1) 1-16.

[11] Bhayo B.A., Vuorinen M., (2012), On generalized trigonometric functions with two parameters, J. Approx.
Theory 164 (10) 1415-1426.

[12] Bhayo B.A., Vuorinen M., (2012), Inequalities for eigenfunctions of the p-Laplacian, Issues of Analysis, 2
(20) 13-35.

[13] Bushell P.J., Edmunds D.E, (2012), Remarks on generalised trigonometric functions, Rocky Mountain J.
Math. 42 (1) 25-57.

[14] Edmunds E.D., Gurka P. and Lang L.,(2012), Properties of generalized trigonometric functions, J. Approx.
Theory, 164 (1) 47-56.
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[16] Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F.G., (1981), Higher Transcendental Functions, I,
Melbourne.

[17] Lindqvist P., Peetre J., (2004), Comments on Erik Lundberg’s 1879 thesis. Especially on the work of
Gr̈an Dillner and his influence on Lundberg, Memorie dell’Instituto Lombardo (Classe di Scienze Matem.
Nat.) 31.

[18] Lindqvist P., (1995), Some remarkable sine and cosine functions, Ricerche di Matematica, XLIV 269-290.
[19] Lindqvist P., Peetre J., (2003), p-arclength of the q-circle, The Mathematics Student 72 (1) 139-145.
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1. Introduction

In 1912 , Bernstein [15] introduced the following sequence of operators Bn : B[0, 1] →
C[0, 1] defined by

(1) Bn(f, x) =
n∑

k=0

(
n

k

)
xk(1− x)n−kf(

k

n
),

where n ∈ N , x ∈ [0, 1] and f ∈ B[0, 1] . Some generalizations and modifications of the
Bernstein polynomials can be found in [11], [9], [13]. Moreover, Szász [14] and Mirakjan [10]
have introduced following operator

(2) Sn(f, x) = e−nx
∞∑
k=0

(nx)k

k!
f(

k

n
),

where n ∈ N , x ≥ 0, f ∈ C[0,∞). For f ∈ C[0,∞) , Durrmeyer type integral modifications
of the operators (2) was defined by Mazhar and Totik [9] as follows

(3) Dn(f, x) = n

∞∑
j=0

e−nx (nx)
k

k!

∫ ∞

0
e−nx (nx)

k

k!
f(t)dt,

where x ∈ [0, 1] . Also, Dunkl analogue of Szász operators given in [16] has been defined as

(4) S∗
n(f, x) =

1

eµ(nx)

∞∑
k=0

(nx)k

γµ(k)
f(

k + 2µθk
n

),

where n ∈ N , x ≥ 0 , f ∈ C[0,∞) , µ ≥ 0.
The Dunkl exponential function is given for µ ≥ −1/2

(5) eµ(nx) =

∞∑
k=0

(nx)k

γµ(k)
,

where the coefficients are as follows
16
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(6) γµ(2k) =
22kk!Γ(k + µ+ 1

2)

Γ(µ+ 1
2)

and γµ(2k + 1) =
22k+1k!Γ(k + µ+ 3

2)

Γ(µ+ 3
2)

and the recurrence relation

(7)
γµ(k + 1)

γµ(k)
= (2µθk+1 + k + 1)

is satisfied where θk is given by [13]

(8) θk =

{
0 if k = 2p
1 if k = 2p+ 1

for p ∈ N ∪ {0}. The Dunkl generalization of two-variable Hermite polynomials [5] is defined
by

(9)
∞∑
k=0

hµk(n, α)

γµ(k)
xk = eαx

2
eµ(nx),

where

(10) hµk(n, α) =
γµ(k)H

µ
k (n, a)

k!
.

Also, Wafi and Rao [18] defined the Szász-Gamma operators based on Dunkl analogue as
follows

(11) Dnf(x) =
1

eµ(nx)

∞∑
k=0

(nx)k

γµ(k)

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−nxf(t)dt,

where x ∈ [0,∞), λ ≥ 0 and the well-known Gamma function Γ(x) is defined as

(12) Γ(x) =

∫ ∞

0
tx−1e−tdt.

Moreover, Dunkl-Gamma type operator in terms of generalization of two-variable Hermite
polynomials [6] is defined by

(13) Sn(f, x) =
1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−ntf(t)dt

where α ≥ 0, µ ≥ −1/2, λ ≥ 0 and x ∈ [0,∞).
In the present paper, we first give some lemmas and definitions to obtain convergence

properties of the operators. Then, we define the Stancu type Dunkl generalization of Szász-
Durrmeyer operators involving two-variable Hermite polynomials. Finally, we give the rates of
convergence of the operator using the classical modulus of continuity, second order modulus of
continuity, Peetre’s K-functional and in terms of the elements of the Lipschitz class LipM (v).

2. Some Lemmas and Definitions

Lemma 2.1. Let hµk(n, α) be the Dunkl generalization of two-variable Hermite polynomials.
Then the following equalities are hold.
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i)

∞∑
k=0

hµk+1(n, α)

γµ(k)
xk = eαx

2
eµ(nx)(2αx+ n)

ii)

∞∑
k=0

hµk+2(n, α)

γµ(k)
xk = eαx

2
eµ(nx)(2α

2x2 + 4αnx+ 2α+ n2) + 4αµ eαx
2
eµ(−nx)

iii)

∞∑
k=0

hµk+3(n, α)

γµ(k)
xk = eαx

2
eµ(−nx)(8α2xµ+ 4αnµ) + eαx

2
eµ(nx) + eαx

2
eµ(nx)(8α

3x3

+ 12α2x2n+ 12α2x+ 6αxn2 + 6an+ n3).

Proof. The proofs of above equalities are given in [3, 17]. □

Definition 2.2. With the help of the Dunkl generalization of two variable Hermite polyno-
mials given (9), we introduce the operators DH

n (f, x)
(14)

DH
n (f, x) =

1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−ntf(

nt+ γ

n+ β
)dt,

where x ∈ [0,∞) ,α ≥ 0,µ > −1/2 , λ ≥ 0 and γ,β parameters satisfy the condition 0 ≤ γ ≤
β. We note that as a special case γ = β = 0 ,then DH

n reduces to Sn operator defined (13).

Lemma 2.3. For the positive linear operator DH
n (f, x) given by (14), then the following

results are satisfied.

i) DH
n (1, x) = 1

ii) DH
n (t, x) =

nx

n+ β
+

2αx2

n+ β
+

λ+ 1

n+ β
+

γ

n+ β

iii) DH
n (t2, x) =

4α2x4

(n+ β)2
+

4nαx3

(n+ β)2
+

(10α+ n2 + 4λα+ 4γα)x2

(n+ β)2
+

(2λn+ 4n+ 2γn)

(n+ β)2

+ (
2µn− 4αµx2 + 4aµ

(n+ β)2
)
eµ(−nx)

eµ(nx)
+

λ2 + 3λ+ 2

(n+ β)2
+

2γλ+ 2γ

(n+ β)2
.

Proof. i) By using the generating function (9), the relation (i) holds.
ii) With the help of definition of the Dunkl analogue of two-variable Hermite polynomials

and the Gamma function, we get

DH
n (f, x) =

n

(n+ β)eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

Γ(k + 2µθk + λ+ 2)

nk+2µθk+λ+1

+
γ

(n+ β)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

Γ(k + 2µθk + λ+ 1)

nk+2µθk+λ+1
.

Also by using recurrence relation (7), we have

DH
n (f, x) =

n

(n+ β)
+

2αx2

(n+ β)
+

λ+ 1

n+ β
+

γ

n+ β

iii) Similarly for f(t) = t2,

DH
n (f, x) =

1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

×
(
n2

∫ ∞

0
tk+2µθk+λ+2e−ntdt+ 2nγ

∫ ∞

0
tk+2µθk+λ+1e−ntdt+ γ2

∫ ∞

0
tk+2µθk+λ+2e−ntdt

)
,

where θ(k+1) = θk + (−1)k and using the recurrence relation (7) completes the proof. □

Theorem 2.4. The operator DH
n and any uniformly continuous bounded function g on the

interval [0,∞), we can give

DH
n ⇒ g(x)

on each compact subset of [0,∞) when n → ∞.
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Proof. From the results obtained in Lemma 2

lim
n→∞

DH
n (ei;x) = xi i = 0, 1, 2

holds. This convergence is uniformly in each compact subset of [0,∞). Then, applying the
universal Korovkin type theorem gives the desired result. □

Lemma 2.5. The operators DH
n (t;x) satisfiy the following results from Lemma 2.

∆1 = DH
n ((t− x);x) =

nx

(n+ β)
+

2αx2

(n+ β)2
+

(λ+ 1)

(n+ β)
+

y

(n+ β)
− x,

∆2 = DH
n ((t− x)2;x) =

4α2

(n+ β)2
x4 +

4αn

(n+ β)
x3 +

(10α+ n2 + 4λα+ 4γα)

(n+ β)2
x2

+
(2λn+ 4n+ 2γn)

(n+ β)2
x+

(2µnx− 4αµx2 + 4αµ)

(n+ β2

eµ(−nx)

eµ(nx)
+

λ2 + 3λ+ 2

(n+ β)2
+

2γλ+ 2γ

(n+ β)2

− 2x

(
nx+ 2αx2 + (λ+ 1) + γ

(n+ β)

)
+ x2.

Lemma 2.6. The following inequality holds true for h ∈ C2
∞[0,∞]

DH
n (h;x)− h(x) ≤ [∆1 +∆2] ∥h∥C2

∞
,

where ∆1 and ∆2 are central moments of operator DH
n given by in Lemma 3.

Proof. □

Lagrange form of the remaining piece of the Taylor series

h(s) = h(x) + (s− x)h
′
(x) +

(s− x)2

2!
h

′′
(σ), σ ∈ (x, s).

Applying the operator DH
n to both sides of this inequality and then using the linearity of the

operator, we have

DH
n (h;x)− h(x) = h

′
(x)∆1 +

h
′′
(σ)

2
∆2

and, it yields

∣∣DH
n (h;x)− h(x)

∣∣ ≤ ∥∥∥h′
(x)
∥∥∥∆1 +

∥∥∥h′′
(x)
∥∥∥∆2 ≤ [∆1 +∆2] ∥h∥ .

3. Special Convergence Results

In this part, we give some some definitions and rates of convergence results of the operators
DH

n (f ;x).
Let g ∈ LipM (v) then the following inequality is hold

|g(s)− g(t)| ≤ M |s− t|v ,

where s, t ∈ [0,∞), 0 < ν ≤ 1, M > 0.
The modulus of continuity is defined by

w(g; δ) := sup |g(s)− g(t)|
s,t∈[0,∞)
||s−t||≤δ

,

where g ∈ Č[0,∞) which is the space of uniformly continuous on [0,∞).

Theorem 3.1. If f ∈ LipM (v), then we have∣∣DH
n (f ;x)− f(x)

∣∣ ≤ M(∆2)
v/2,

where ∆2 = DH
n ((t− x)2;x).
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Proof. With the help of the definition of f ∈ LipM (v) and linearity of operator DH
n , we get

DH
n (f(t)− f(x);x) ≤ MDH

n (|t− x|v ;x)
DH

n (f(t);x)− f(x) ≤ MDH
n (|t− x|v ;x)∣∣DH

n (f(t);x)− f(x)
∣∣ ≤ MDH

n (|t− x|v ;x).

Let use the definition of operator

DH
n (|t− x| ;x) = DH

n (f, x) =
1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

×
(∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)vdt

)
and using Hölder’s inequality for the above integral

≤ 1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

×
(∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)2dt

)v/2(∫ ∞

0
tk+2µθk+λe−nt

) 2−v
2

.

and then, we apply Hölder’s inequality for sum

≤

( ∞∑
k=0

1

eαx2eµ(nx)

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)2dt

)v/2

×

( ∞∑
k=0

1

eαx2eµ(nx)

hµk(n, α)

γµ(k)
xk
∫ ∞

0
tk+2µθk+λe−nt

) 2−v
2

by using the above inequalities, we get

DH
n (|t− x|v ;x) ≤ DH

n (|t− x|2 ;x)
v
2

from which, it follows∣∣DH
n (f(t);x)− f(x)

∣∣ ≤ MDH
n (|t− x|v ;x) ≤ MDH

n (|t− x|2 ;x)
v
2

∣∣DH
n (f(t);x)− f(x)

∣∣ ≤ MMDH
n (|t− x|2 ;x)

v
2

□

Theorem 3.2. DH
n ((g(t);x) operators satisfiy the inequality∣∣DH

n (g(t);x)− g(x)
∣∣ ≤ 2w(g;

√
∆2),

where g ∈ CB[0,∞).

Proof. □

As a consequence of classical modulus of continuity and g ∈ CB[0,∞)

|g(t)− g(x)| ≤ w(g; δ)(
|t− x|

δ
+ 1;x)

since DH
n operator is also positive linear operator, we can write∣∣DH

n (g;x)− g(x)
∣∣ = ∣∣DH

n (g(t)− g(x);x)
∣∣ ≤ DH

n (|g(t)− g(x)| ;x) ≤ w(g; δ)DH
n (

t− x

δ
;x)

= w(g; δ)(
DH

n (|t− x| ;x)
δ

+ 1).
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In addition to this inequaltiy, we use the definition of operator

DH
n (|t− x| ;x) = 1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

×
(∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)dt

)
then by applying Cauchy Schwarz inequality

DH
n (|t− x| ;x) ≤ 1

eαx2eµ(nx)

∞∑
k=0

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

×
(∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)2dt

) 1
2
(∫ ∞

0
tk+2µθk+λe−ntdt

) 1
2

.

and using Cauchy- Schwarz inequality for summation on right hand side

≤

( ∞∑
k=0

1

eαx2eµ(nx)

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−nt(

nt+ γ

n+ β
− x)2dt

)

×

( ∞∑
k=0

1

eαx2eµ(nx)

hµk(n, α)

γµ(k)
xk

nk+2µθk+λ+1

Γ(k + 2µθk + λ+ 1)

∫ ∞

0
tk+2µθk+λe−ntdt

) 1
2

DH
n (|t− x| ;x) ≤

√
∆2.

Thus, we can give the following inequaltiy

w(g; δ)

(
DH

n (|t− x| ;x)
δ

+ 1

)
≤ w(g; δ)

(√
∆2

δ
+ 1

)
so, ∣∣DH

n (g;x)− g(x)
∣∣ ≤ 2w(g; δ),

where δ =
√
∆2. Hence, the proof complete.

Theorem 3.3. For the operators DH
n (f ;x), the following inequality holds∣∣DH

n (f ;x)− g(x)
∣∣ ≤ 2K

(
g;

(√
∆1 +

√
∆2

2

))
,

where ∆1,∆2 are central moments of DH
n .

Proof. Lagrange form of the remaining piece of the taylor series for f ∈ C2
B[0,∞)

f(t)− f(x) = f
′
(x)(t− x) + f

′′
(c)

(t− x)2

2
x ≤ c ≤ t

Then, by applying the operator DH
n (f ;x) both side

∣∣DH
n (f ;x)− g(x)

∣∣ = ∣∣∣f ′
(x)
∣∣∣DH

n (|t− x| ;x) +

∣∣∣f ′′
(c)
∣∣∣

2
DH

n (t− x)2;x)

since DH
n ((|t− x| ;x) ≤

√
∆2, we get

∣∣DH
n (f ;x)− g(x)

∣∣ ≤ ∣∣∣f ′
(x)
∣∣∣√∆1 +

∣∣∣f ′′
(c)
∣∣∣

2

√
∆2

∣∣DH
n (f ;x)− g(x)

∣∣ ≤ ∥∥∥f ′
(x)
∥∥∥
CB [0,∞)

√
∆1 +

∥∥∥f ′′
(c)
∥∥∥
CB [0,∞)

2

√
∆2∣∣DH

n (f ;x)− g(x)
∣∣ ≤ (√∆1 +

√
∆2

2

)
∥f∥C2

B [0,∞) .

By using the above inequality, we can write∣∣DH
n (f ;x)− g(x)

∣∣ = ∣∣DH
n (g;x)−DH

n (f ;x) +DH
n (f ;x)− f(x) + f(x)− g(x)

∣∣
≤ DH

n (|g − f | ;x) + |g(x)− f(x)|+
∣∣DH

n (f ;x)− f(x)
∣∣ .
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(15)
∣∣DH

n (f ;x)− g(x)
∣∣ ≤ 2 ∥g − f∥cB [0,∞) + 2 ∥f∥C2

B [0,∞)

(√
∆1 +

√
∆2

2

)
.

The definition of Petre’s K functional of the functionf ∈ CB [0,∞) is given as follows

K(f ; δ) := inf
g∈C2

B [0,∞)

{
∥f − g∥CB [0,∞) + δ ∥g∥

CB [0,∞)

}
,

where for all δ > 0. By taking infimum of both sides of (15) of for f, it yields∣∣DH
n (f ;x)− g(x)

∣∣ ≤ 2K

(
g;
√

∆1 +

√
∆2

2

)
Hence, the proof complete. □
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Abstract. It is very well-known that wavelets have great advantage of being able to
separate and identify fine details in a signal or a function. One of the main advantages of
wavelets compared to the Fourier analysis and its related theories is that they offer simulta-
neous localization in the time and frequency domain. The second main advantage of wavelets
is that they are computationally very fast and detailed when using wavelet expansions and
transformations. In the present study we will deal with the linear approximation operators
constructed by compactly supported Daubechies wavelets. In details, we will reconstruct
neural network operators, where location and time are very important and effective, with
the help of wavelets, and we will examine and analyse various properties of the wavelet type
extension of the neural network operators.

2020 Mathematics Subject Classifications: 41A35, 65T60, 41A05, 47A58, 41A25

Keywords: wavelets, neural network operators, approximation.

1. Introduction

It is known that Artificial Neural Networks (ANN) are defined as a mathematical model
that allows the brain’s behavior and abilities to be reproduced. In general, Neural Network is
a family of parametrized functions, namely by a mathematical point of view it is a multiple
composition of some special functions called activations. It is important to point out that,
this approach motivated by the fundamental density theorem due to George Cybenko given
in [23].

In 1989, Cybenko [23] gave an answer to the superposition problem on C[a, b] with his
famous density theorem, which states that every continuous function defined on [a, b] can
be approximated by a sequence constructed by a linear combination of sigmoidal functions.
In other words, Cybenko confirmed that a neural network with solely one hidden-layer is
capable of always approximating to a continuous function. The main advantage of the above
theory lies on its connection with the Artificial Neural Networks, Learning Theory and their
applications to Approximation Theory, see e.g. [4], [22] and [33].

Based on the idea developed by Cybenko, the theory of the mathematical models of the
neural network (NN) operators arise since 1992 with the pioneer work of Cardaliaguet and
Euvrard [12], and then in the next years, they have been largely studied by several authors
under different aspects. Especially in the last two decades, there are many new version of
artificial neural networks has been introduced and widely studied.

In particular, in 1997 Anastassiou [2] pointed out and obtained that the compactly sup-
ported bell-shaped functions used in the Density Theorem of Cybenko and the Cardaliaguet
and Euvrard (NN) operators can be obtained from sigmoidal functions used effectively in
Artificial Neural Networks, serious relations have emerged between the Cybenko convergence
theorem and the Theory of Approximations. Thanks to this fundamental work of Anastassiou
in 1997, the techniques and theorems of the Theory of Approximations began to be used in
Artificial Neural Networks.

Owing to the work of the famous mathematician G. Anastassiou in 1997, see [2], the theory
of neural network(NN) operators has been introduced by Anastassiou as an extension of the
bell-shaped operators studied by Cardaliaguet and Euvrard in [12].

Especially in the last two decades, based on the idea developed by Anastassiou [2] and
afterwards the continuous works on these operators and some of their modifications of D.
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Costarelli, R. Spigler, C. Bardaro, G. Vinti and their research group (RITA network) from
Perugia, such as Kantorovich and Durrmeyer forms have been of great importance in the
development of mathematical models for signal and image recovering. And hence the ap-
proximation problem was proved by using NN operators and some of its different forms in
some function spaces, see e.g., [3]-[6], [10]-[11], [14]-[21], [7], [9] and [13]). Since the classical
neural network operators cannot be used for Lp(R)(1 ≤ p < ∞) approximation, to obtain
some positive results for these functions, their Kantorovich and Durrmeyer type modifications
are considered.

Especially, in the paper [15], Costarelli and Spigler introduced and investigated a kind of
neural network operators for absolutely continuous functions, by considering the relations
between sigmoidal functions, multiresolution analysis and the scaling functions. Moreover
they also state some intersting results related with the rate of convergence in the set AC[a, b].

The goal of this study is to find a positive solution to the approximation (or superposition)
problem for operators in some general function spaces, by using the effects and relations
between different function spaces provided by the wavelets . In other words, we will propose
a generalization and extension of the theory of interpolation to operators by introducing an
integral operator, called wavelet type operators (see [1], [26], [31], [32] and [35]). The new
operators are more flexible than the previous ones and they are at least a natural extensions
of the classical NN operators, Kantorovich and Durrmeyer type modifications.

The basis used in this construction of the new neural network operators are the Cybenko
density theorem and wavelets.

Similar constructions and investigations can be found in the very recent papers of the
author [27]-[30].

It is very well-known that wavelets and wavelet expansions have the great advantage of
being able to separate and identify fine details in a signal or a function.

One of the main advantages of wavelets compared to the Fourier analysis and its related
theories is that they offer simultaneous localization in the time and frequency domain. The
second main advantage of wavelets is that they are computationally very fast and detailed
when using wavelet expansions and transformations.

Unlike the Fourier analysis, wavelets tell us about the frequencies present as well as the
time in which these frequencies were observed.

So, wavelets are a better way of analyzing especially the dynamic signals because they
have a relatively higher resolution in both time and frequency domain.

Moreover, from the definitions and properties of the wavelet bases, one can use wavelet
type operators for approximation problem in Lp spaces.

Since wavelets have many advantages for approximating in Lp spaces, potential applications
in machine learning and neural networks, the future directions of this work are to try to adapt
what has been accomplished in wavelets to these spaces and theories (see [5] and [22]).

In Sect. 2, we recall the definition of the NN operators and wavelets, and all their main
properties which are useful in order to prove the quantitative estimates, together with some
examples of activation functions, while in Sect. 3 the main results of the paper have been
established. In the final part of this study, we will provide also some graphical examples
and comparisons between the convergence of the NN operators obtained different kind of
wavelets.

2. Preliminaries and auxiliary results

In this section we shall recall some notation and background material of the theory of
Neural Networks and the theory of wavelet, especially Daubechies’ compactly supported
wavelets ([24], [25]), used throughout this paper.

We denote by C[a, b], B[a, b] and L∞(R) the sets of continuous, bounded and essentially
bounded functions with their usual norms, respectively.
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Definition 2.1. (Centered bell-shaped function) A function b : R → R is said to be
centered bell-shaped if b belongs to L1 and its integral is nonzero, if it is nondecreasing on
(−∞, 0) and nonincreasing on [0,+∞).

Definition 2.2. (Sigmoidal Function) Let σ : R → R be a measurable function satisfies

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1,

then it is called sigmoidal function.

As an example of a sigmoidal and its corresponding bell-shaped function, we can consider
the ramp function, which is very useful and important for the neural network.

Definition 2.3. (Ramp Function) A ramp function is a special sigmoidal function defined
as

R(x) =

 0 , x ≤ −1/2
x+ 1/2 , −1/2 < x < 1/2

1 , x ≥ 1/2
.

Clearly, a bell-shaped function can be define by using Sigmoidal ( or Ramp) function,
namely

bσ(x) =
σ(x+ 1)− σ(x− 1)

2
,

and
bR(x) = R(x+ 1/2)−R(x− 1/2).

Moreover, bR : R → R is a bell-shaped kernel function obtained by ramp function R(x) that
satisfies following assumptions:

bR is a continuous function on R,

(1) bR ∈ L1(R),
n∑

k=0

bR(u− k) = 1 for every u ∈ R,

and

(2) OR := sup
u∈R

n∑
k=0

bR(u− k) <∞

where the convergence of the series (2) is uniform on each compact subintervals of R.
Some other sigmoidal functions are Gompertz function, Logistic function, Error function

and Hyperbolic tangent functions, etc.

It is important to note that, the theory of sigmoidal functions are not new. At 1838, the
logistic function was introduced by Pierre François Verhulst [36]-[37], who applied it to human
population dynamics. Verhulst derived his logistic equation to describe the mechanism of the
self-limiting growth of a biological population.

Since then the logistic functions have many applications in many research areas, including
biology, ecology, population dynamics, chemistry, demography, economics, geoscience, math-
ematical psychology, probability, sociology, political science, nancial mathematics, statistics.

Now we will give some definitions of the Neural Network (NN) Operators.

Definition 2.4. (Cardaliaguet and Euvrard (NN) Operators)

Let f : R → R be a continuous and bounded function and n ∈ N+, the Cardaliaguet and
Euvrard (NN) Operators are defined as.

(Fnf) (x) =

n2∑
k=−n2

f
(
k
n

)
Bnα

b(n−α(nx− k),

where 0 < α < 1, b is a bell-shaped function with compact support ⊂ [−T, T ], and

B :=

T∫
−T

b(x)dx
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The Cardaliaguet and Euvrard (NN) Operators and Its different modifications were inten-
sively studied by Anastassiou, Spiegler, Costarelli, Vinti.

In [2], Anastassiou defined the Cardaliaguet and Euvrard (NN) Operators as follows;

Definition 2.5. Let f : R → R be a continuous and bounded function, T > 0, n ∈ N+ and
n ≥ max{T + |x| , T−1/α}, the Cardaliaguet and Euvrard (NN) Operators are given by

(Fnf) (x) =

⌊nx+Tnα⌋∑
k=⌈nx−Tnα⌉

f
(
k
n

)
Bnα

b(n−α(nx− k),

where again 0 < α < 1, b is a bell-shaped function with compact support ⊂ [−T, T ], and

B :=

T∫
−T

b(x)dx.

As a special case of the operators defined on [a, b] and [0, 1], we have the following type
Neural Network (NN) Operators, respectively.

Definition 2.6. (Neural Network (NN) Operators). Let f : [a, b] → R be a bounded
function, and n ∈ N+ such that ⌈na⌉ ≤ ⌊nb⌋. The positive linear neural network operators
activated by the ramp function R(x), are defined as.

(Fnf) (x) =

n∑
k=0

f
(
a+ k b−a

n

)
bR

(
n(x−a−k b−a

n
)

b−a

)
n∑

k=0

bR

(
n(x−a−k b−a

n
)

b−a

) , x ∈ [a, b],

and

Definition 2.7. (Neural Network (NN) Operators). Let f : [0, 1] → R be a bounded
function, and n ∈ N+. The positive linear neural network operators activated by the ramp
function R, are defined as.

(3) (Nnf) (x) =

n∑
k=0

f
(
k
n

)
bR (nx− k)

n∑
k=0

bR (nx− k)

, x ∈ [0, 1],

where bR is the bell-shaped function obtained by the ramp function R.

Now, we will give some informations about wavelets, multiresolution analysis and its the-
ories, which will be useful for the remain part of this work.

Definition 2.8. (Scale Function) A scale function defined on the interval [0, 1) as

ϕ(t) =

{
1 , 0 ≤ x < 1
0 , e.w.

.

Clearly, a scale function can be also define by using Heaviside unit step function, namely

H(x) =

{
1 , x ≥ 0
0 , x < 0

,

and hence

ϕ(x) = H(x)−H(x− 1).

A multiresolution analysis (MRA) is a sequence (V j)j∈Z of closed subspaces of L2(R) such
that the following hold:

i) Vj is a set of all f ∈ L2(R) which are constant on 2−j length intervals and

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ Vj+1 ⊂ .. ⊂ L2(R),⋃
j

Vj = L2(R),
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ii)

∀j, k ∈ Z, f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1,

∀k ∈ Z, f(x) ∈ V0 ⇔ f(x− k) ∈ V0

∀j, k ∈ Z, f(x) ∈ Vj ⇔ f(x− 2−jk) ∈ Vj ,

and

iii) ⋂
j

Vj = {0} .

Since Vj ⊂ Vj+1 (∀j ∈ Z) then there exist subspaces Wj of L2(R) satisfying

V1 = V0 ⊕W0,

V2 = V1 ⊕W1,

...

Vj+1 = Vj ⊕Wj ,

and

L2(R) = ...W−2 ⊕W−1 ⊕W0 ⊕ ...⊕Wj ⊕Wj+1 ⊕ ...

Definition 2.9. (Wavelet) A wavelet is a small wave which oscillates and decays in the
time domain. A wavelet basis set starts with two orthogonal functions: the scaling function
or father wavelet ϕ(t) and the wavelet function or mother wavelet ϑ(t). By scaling and
translation of these two orthogonal functions we obtain a complete basis set. The scaling and
wavelet functions, respectively, satisfy

∞∫
−∞

ϕ(t)dt = 1,

∞∫
−∞

ϑ(t)dt = 0.

These two functions have finite energy, namely ϕ, ϑ ∈ L2(R), and orthogonal.

In general, the wavelets refers to the set of family of orthonormal functions of the form

ϕa,b(t) =
1√
a
ϕ

(
t− b

a

)
, a > 0, b ∈ R,

ϑa,b(t) =
1√
a
ϑ

(
t− b

a

)
, a > 0, b ∈ R,

where ϕ and ϑ are the basic, father and mother wavelets, respectively.

Haar Wavelet: The simplest wavelet is known as the Haar Wavelet defined as;

ϑ(x) =

 1 , 0 ≤ x < 1
2

−1 , 1
2 ≤ x < 1

0 , e.w.

with the scaling function

ϕ(t) =

{
1 , 0 ≤ x < 1
0 , e.w.

.

Clearly, Haar wavelets constitutes an orthonormal system for the space of square-integrable
functions on the real line. Since Haar wavelet is not continuous and therefore not differen-
tiable, it is suitable for representing discrete signals not for representing smooth signals or
functions.

In the present study, we consider orthonormal bases of wavelets in L2(R), and assume
that there is a scaling function (father wavelet) ϕ(t) whose whose translates {ϕ(t− n)} are
orthogonal and the mother wavelet ϑ(t) based on the father wavelet ϕ(t) gives rise to the
orthonormal basis ϑj,k(t) of L

2(R), where

(4) ϑj,k(t) = 2j/2ϑ(2jt− k).
28



Neural Network Operators described using wavelets

Hence, by using a multiresolution analysis (MRA), each f ∈ L2(R) has the following repre-
sentation

f(x) =
∑
j∈Z

∑
k∈Z

bj,kϑj,k(x),

called wavelet expansion of f ∈ L2(R), where bj,k are wavelet coefficients defined by

bj,k = ⟨f(x), ϑj,k(x)⟩ = 2j/2
∫
R

f(x)ϑ(2jx− k)dx.

Some convergence results about wavelet expansions, please see [31], [35] and [32].

Some of the special cases of a and b, one can obtain different type of wavelets.

Franklin system: Let k, j ∈ Z. If one choose a = 2−j and b = k2−j , then one can obtain
the Franklin system, which is an orthonormal basis of L2[0, 1].

Strömberg wavelet: Even though the Haar wavelet was earlier known to be an orthonor-
mal wavelet, Strömberg wavelet was the first smooth orthonormal wavelet to be discovered.
Namely, J.O. Strömberg constructed the orthonormal basis of the form (4) by using a func-
tion ϑ ∈ Cm for an abitrary nonnegative integer m, which is a complete orthonormal system
in the space of square integrable functions over R.

The wavelet analysis procedure is to adopt a wavelet prototype function, called an analyz-
ing wavelet (father wavelet) or mother wavelet.

Definition 2.10. ([24], [25]) (Compactly supported Daubechies Wavelet)

Owing to the above definitions, first of all, we introduce the NN operators by using the
compactly supported Daubechies wavelets considered in this paper.

Let us assume that the scale function (or father wavelets) ψ ∈ L∞(R) and satisfies:

a) ψ is a compactly supported, namely there is a real constant λ > 0 such that supp
ψ ⊂ [0, λ],

b)
∞∫

−∞
ψ(x)dx = 1,

c) the first N moments of the father wavelet ψ satisfy

∞∫
−∞

xjψ(x)dx = 0, j = 1, ..., N.

Note 1. Actually, Daubechies wavelets have strong relations with the properties of conti-
nuity and differentiability. Namely, for an arbitrary fixed integer N ≥ 1, compactly supported
Daubechies wavelet ψ is supported with [0, 2N − 1], in addition there exists a constant r > 0
such that for N ≥ 2, ψ ∈ CrN (R) and to have a given number of vanishing moments.

In particular, when N = 1, then the first Daubechies wavelet ψ will be the classical Haar
basis. As N increases, the regularity of the wavelets increase (see [24], [25]).

This means that if we want to use Daubechies wavelets to reconstruct a function, it is
more convenient to choose or construct wavelets based on the continuity or differentiability
properties of the given function (please see Haar wavelet).

Now, we will consider neural network operators activated by the ramp function R, where
location and time are very important and effective, with the help of wavelets.

Moreover we will examine and analyse various properties of the wavelet type extension of
the neural network operators.
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Definition 2.11. (Wavelet type Neural Network (NN) Operators). Let f : [0, 1] → R
be a bounded measurable function, n ∈ N+. and let ψ ∈ L∞(R) be a father wavelet satisfies
a)-c). Then the wavelet type Neural Network (NN) operators activated by the ramp function
R, constructed by using the compactly supported Daubechies wavelets, are defined by:

(5) (WNnf) (t) = n

n∑
k=0

bR (nt− k)
∫
R
f (x)ψ(nx− k)dx

n∑
k=0

bR (nt− k)

, t ∈ [0, 1],

where bR is the bell-shaped function obtained by the ramp function R.

Remark 1. If we choose the father wavelet ψ as the Haar scaling function, namely ψ(x) =
χ[0,1](x), then clearly our wavelet type operators reduce to the Kantorovich form of the Neural
Network (NN) operators. Indeed;

(WNnf)(t) = n

n∑
k=0

bR (nt− k)
∫
R
f (x)ψ(nx− k)dx

n∑
k=0

bR (nt− k)

=

n∑
k=0

bR (nt− k)
1∫
0

f
(
u+k
n

)
ψ(u)dx

n∑
k=0

bR (nt− k)

.

This means that our operators constructed by wavelets are a natural extension of the
Kantorovich type of the NN operators and also its Durrmeyer type operators.

Remark 2. Moreover, the central moments of the wavelet type NN operators (5) are the
same as of the classical NN operators (3). Indeed, we get

(WNn (x− t)β)(t) = n

n∑
k=0

bR(nt− k)
∫
R
(x− t)β ψ(nx− k)dx

n∑
k=0

bR(nt− k)

=

n∑
k=0

bR(nt− k)
∫
R

(
u+k
n − t

)β
ψ(u)du

n∑
k=0

bR(nt− k)

=
1

nβ

n∑
k=0

bR(nt− k)
∫
R
(u+ k − nt)β ψ(u)du

n∑
k=0

bR(nt− k)

=
1

nβ

n∑
k=0

bR(nt− k)
∫
R

[
β∑

i=0

(
β
i

)
ui (nt− k)β−i

]
ψ(u)du

n∑
k=0

bR(nt− k)

Again by the properties of the compactly supported Daubechies wavelets, namely c) and
b), we get

(WNn (x− t)β)(t) =
1

nβ

n∑
k=0

bR(nt− k) (k − nt)β

n∑
k=0

bR(nt− k)

= (Nn (x− t)β)(t).
30



Neural Network Operators described using wavelets

Throughout this work, for every u ∈ R and for some β > 0, we assume that the algebraic
and discrete absolute moment of order β are given by, i.e.,

mβ(bR) := sup
u∈R

n∑
k=0

bR (u− k) (u− k)β ,

and

Mβ(bR) := sup
u∈R

n∑
k=0

bR (u− k) |u− k|β <∞.

3. Fundamental Properties and Main Results

We now introduce some notations and structural hypotheses, which will be fundamental
in proving our convergence theorems. This section provides the main approximation results
of the paper. We have the followings.

We are now ready to establish one of the first main results of this study, which gives a
strong relation between NN operators (3) and our new operators (5) constructed by wavelets.:

Theorem 3.1. Let f ∈ B[0, 1] and let ψ ∈ L∞(R) be a father wavelet satisfies a)-c). Then
the moments of wavelet type NN operators, constructed by using the compactly supported
Daubechies wavelets (5) and the NN operators (3) are the same, namely

(WNnx
s)(t) = (Nnx

s)(t), s = 0, 1, ...,K

holds true.

Proof. In view of the definition of the operator (5), we have

(WNnx
s)(t) = n

n∑
k=0

[∫
R
xsψ(nx− k)dx

]
bR(nt− k)

n∑
k=0

bR(nt− k)

=

n∑
k=0

bR(nt− k)
∫
R

(
u+k
n

)s
ψ(u)du

n∑
k=0

bR(nt− k)

=
1

ns

n∑
k=0

bR(nt− k)
∫
R
(u+ k)s ψ(u)du

n∑
k=0

bR(nt− k)

=
1

ns

n∑
k=0

bR(nt− k)
∫
R

[
s∑

i=0

(
s
i

)
uiks−i

]
ψ(u)du

n∑
k=0

bR(nt− k)

.

In view of c), one has for i ̸= 0∫
R

[
s∑

i=0

(
s
i

)
uiks−i

]
ψ(u)du = 0

and for i = 0 and from b) we get

(WNnx
s)(t) =

1

ns

n∑
k=0

bR(nt− k)
∫
R
ksψ(u)du

n∑
k=0

bR(nt− k)

=

n∑
k=0

ks

ns bR(nt− k)

n∑
k=0

bR(nt− k)

= (Nnx
s)(t).
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□

Theorem 3.2. Let f ∈ B[0, 1] be a measurable function and let ψ ∈ L∞(R) be a father
wavelet satisfies a)-c). Then

lim
n→∞

(WNnf)(t0) = f(t0)

holds true at each point t0 of continuity of f.

Proof. Since t0 is a continuity point of f , then clearly

|f(t)− f(t0)| < ϵ

holds true when |t− t0| < δ, and

|f(t)− f(t0)| ≤ 2 ∥f∥B[0,1]

holds true, when |t− t0| ≥ δ.

So, in view of the definition of the operator (5), one has

(WSnf) (t0)− f(t0) = n

n∑
k=0

bR (nt0 − k)
∫
R
f (x)ψ(nx− k)dx

n∑
k=0

bR (nt0 − k)

− f(t0)

=

n∑
k=0

bR (nt0 − k)
∫
R
f
(
u+k
n

)
ψ(u)du

n∑
k=0

bR (nt0 − k)

− f(t0).

By Theorem 1, we know that

(6) (WNn1)(t) = (Nn1)(t) = 1.

Hence we can write

|(WSnf) (t0)− f(t0)| =

∣∣∣∣∣∣∣∣
n∑

k=0

bR (nt0 − k)
∫
R

[
f
(
u+k
n

)
− f(t0)

]
ψ(u)du

n∑
k=0

bR (nt0 − k)

∣∣∣∣∣∣∣∣
≤

n∑
k=0

bR (nt0 − k)
∫
R

∣∣f (u+k
n

)
− f(t0)

∣∣ |ψ(u)| du
n∑

k=0

bR (nt0 − k)

Let us divide the last term into two parts as;

|(WNnf) (t0)− f(t0)| ≤ P1 + P2,

where

P1 ≤

n∑
k=0

bR (nt0 − k)
∫

|u+k
n

−t0|<δ

∣∣f (u+k
n

)
− f(t0)

∣∣ |ψ(u)| du
n∑

k=0

bR (nt0 − k)

and

P2 ≤

n∑
k=0

bR (nt0 − k)
∫

|u+k
n

−t0|≥δ

∣∣f (u+k
n

)
− f(t0)

∣∣ |ψ(u)| du
n∑

k=0

bR (nt0 − k)

Hence one has

P1 =

n∑
k=0

bR (nt0 − k)
∫

|u+k
n

−t0|<δ

∣∣f (u+k
n

)
− f(t0)

∣∣ |ψ(u)| du
n∑

k=0

bR (nt0 − k)

≤ ORϵ ∥ψ∥∞ ,
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and

P2 =

n∑
k=0

bR (nt0 − k)
∫

|u+k
n

−t0|≥δ

∣∣f (u+k
n

)
− f(t0)

∣∣ |ψ(u)| du
n∑

k=0

bR (nt0 − k)

≤ 2 ∥f∥B[0,1]

n∑
k=0

bR (nt0 − k)
∫

|u+k
n

−t0|≥δ

|ψ(u)| du

n∑
k=0

bR (nt0 − k)

≤ 2 ∥f∥B[0,1]

M2(bR)

δ2n2
∥ψ∥∞ = O(n−2).

Collecting these estimates we have

lim
n→∞

(WNnf) (t0) = f(t0).

This completes the proof. □

Theorem 3.3. Let f ∈ C[0, 1] and let ψ ∈ L∞(R) be a father wavelet satisfies a)-c). Then

|(WNnf) (x)− f(x)| ≤ 4ω (f ; 1/n)

holds true.

Corollary 3.4. The same arguments of Theorem 2 apply to the case when f ∈ C[0, 1]. In
this case the convergence is uniform with respect to x ∈ [0, 1], and hence one has

lim
n→∞

∥(WNnf)− f∥C[0,1] = 0.

Now, let us consider the following Peetre’s K−functional:

(7) K2(f, δ) := inf
g∈W 2

{∥f − g∥C[0,1] + δ
∥∥g′′∥∥

C[0,1]
},

where δ > 0 and W 2 = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]}. Then there exists an absolute constant
C > 0 such that

(8) C−1ω2(f,
√
δ) ≤ K2(f, δ) ≤ Cω2(f,

√
δ),

where

(9) ω2(f,
√
δ) := sup

0<h≤
√
δ

sup
x∈[0,1]

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . (see [8])

Theorem 3.5. Let f ∈ C[0, 1] and let ψ ∈ L∞(R) be a father wavelet satisfies a)-c). Then

lim
n→∞

(WNnf) (x) = f(x),

and

|(WNnf) (x)− f(x)| ≤ (K + 1)K2

(
f ;
M2(bR) + λ2OR + 2λM1(bR)

n2

)
,

where K = λ ∥ψ∥∞ and K2(f ; δ) is the Peetre’s K-functional.

Proof. Let g ∈W 2. By Taylor’s theorem, we have

g(t) = g(x) + g′(x)(t− x) +

∫ t

x
(t− v)g′′(v)dv, t ∈ [0, 1].
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In view of Remark 2 and (6), applyingWNn to the both sides of the above equation, we have

|(WNng) (x)− g(x)| =

∣∣∣∣(WNn

(
g′(x)(t− x) +

∫ t

x
(t− v)g′′(v)dv

))
(x)− g(x)

∣∣∣∣
≤

n∑
k=0

bR (nx− k)
∫
R

∣∣∣∫ u+k
n

x

(
u+k
n − v

)
g′′(v)dv

∣∣∣ |ψ(u)| du
n∑

k=0

bR (nx− k)

≤

n∑
k=0

bR (nx− k)
λ∫
0

[∫ u+k
n

x

∣∣u+k
n − v

∣∣ |g′′(v)| dv] |ψ(u)| du
n∑

k=0

bR (nx− k)

≤ λ ∥ψ∥∞
∥∥g′′∥∥

C[0,1]

n∑
k=0

bR (nx− k)
(
λ+k
n − x

)2
n∑

k=0

bR (nx− k)

= λ ∥ψ∥∞
∥∥g′′∥∥

C[0,1]

n∑
k=0

bR (nx− k)
[(

k
n − x

)2
+ λ2

n2 + 2λ
n

(
k
n − x

)]
n∑

k=0

bR (nx− k)

≤ λ ∥ψ∥∞
∥∥g′′∥∥

C[0,1]

[
M2 (bR)

n2
+
λ2

n2
OR + 2

λ

n

M1 (bR)

n

]
=

λ ∥ψ∥∞ ∥g′′∥C[0,1]

n2
[
M2 (bR) + λ2OR + 2λM1 (bR)

]
.

Hence, taking infimum on the right hand side over all g ∈W 2 and using (7), we get

|(WNnf) (x)− f(x)| ≤ inf
g∈W 2

{∥WNn (f − g)∥∞ + ∥f − g∥∞ + |(WNng) (x)− g(x)|}

≤ inf
g∈W 2

{(λ ∥ψ∥∞ + 1) ∥f − g∥∞ +
λ ∥ψ∥∞

[
M2(bR) + λ2OR + 2λM1(bR)

]
n2

∥∥g′′∥∥∞}

≤ (K + 1) inf
g∈W 2

{∥f − g∥∞ +
M2(bR) + λ2OR + 2λM1(bR)

n2
∥∥g′′∥∥∞}

= (K + 1)K2

(
f ;
M2(bR) + λ2OR + 2λM1(bR)

n2

)
,

here K = λ ∥ψ∥∞ . □

Theorem 3.6. Let f ∈ C[0, 1], ψ ∈ L∞(R) be a father wavelet satisfies a)-c) and α ∈ (0, 2)
be fixed real number. Then

ω2(f ; t) = O(tα) ⇒ |(WNnf) (x)− f(x)| = O(1/n)α

holds true.

Proof. In view of (7), (9) and the relation (8) betwen modulus of smoothess and Peetre’s
K-functional, we have from Theorem 4

|(WNnf) (x)− f(x)| ≤ (K + 1)K2

(
f ;
M2(bR) + λ2OR + 2λM1(bR)

n2

)
≤ (K + 1)Cω2

(
f ;

√
M2(bR) + λ2OR + 2λM1(bR)

n2

)

≤ (K + 1)C

(
M2(bR) + λ2OR + 2λM1(bR)

n2

)α/2

.

□
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4. Graphical representations

Now, we will give some graphical examples for these approach, namely convergence to
functions by means of wavelet type Neural Network operators (WNnf) (x).

We note that in all the following Figures, the graph with the red line belongs to the target
function.

Example 4.1. Let f(x) = x2, and take the activation function as a Ramp function for the
neural network operators. We consider a special case of the wavelet type Neural Network
operators (WNnf) (x), namely Kantorovich type Neural Network operators.Then one has for
n = 3, 5 and for n = 20.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(x)=x2

(WN3f)(x)

(WN5f)(x)

(WN20f)(x)

Figure 1. Approximation of f(x) = x2 by Kantorovich type NN operator
activated by Ramp function, for n = 3, 5 and n = 20.

Example 4.2. Let f(x) = x2, and take the activation function as a Ramp function for the
neural network operators. We consider the wavelet type Neural Network operators (WNnf) (x)
constructed by using Haar scaling function. Then one has for n = 3, 5 and for n = 20.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

f(x)=x2

(WN3f)(x)

(WN5f)(x)

(WN20f)(x)

Figure 2. Approximation of f(x) = x2 by Haar Wavelet type NN operator
activated by Ramp function, for n = 3, 5 and n = 20.

Example 4.3. Let f(x) = x2, and take the activation function as a Ramp function for the
neural network operators. We consider the wavelet type Neural Network operators (WNnf) (x)
constructed by using Shannon wavelet function. Then one has for n = 15, 36 and for n = 55.
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0.2 0.4 0.6 0.8 1.0

-6

-4

-2

2
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6

8

f(x)=x2

(WN15f)(x)

(WN36f)(x)

(WN55f)(x)

Figure 3. Approximation of f(x) = x2 by Shannon Wavelet type NN oper-
ator activated by Ramp function, for n = 15, 36 and n = 55.

Example 4.4. Let f(x) = x − x2, and take the activation function as a Ramp function for
the neural network operators. We consider a special case of the wavelet type Neural Network
operators (WNnf) (x), namely Kantorovich type Neural Network operators.Then one has for
n = 3, 5 and for n = 20.

0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.1

0.2
f(x)=x-x2

(WN3f)(x)

(WN5f)(x)

(WN20f)(x)

Figure 4. Approximation of f(x) = x−x2 by Kantorovich type NN operator
activated by Ramp function, for n = 3, 5 and n = 20.

Example 4.5. Let f(x) = x − x2, and take the activation function as a Ramp function
for the neural network operators. We consider the wavelet type Neural Network operators
(WNnf) (x) constructed by using Haar scaling function. Then one has for n = 3, 6 and for
n = 15.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

f(x)=x-x2,

(WN3f)(x)

(WN6f)(x)

(WN15f)(x)

Figure 5. Approximation of f(x) = x−x2 by Haar Wavelet type NN operator
activated by Ramp function, for n = 3, 6 and n = 15.
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Example 4.6. Let f(x) = x − x2, and take the activation function as a Ramp function
for the neural network operators. We consider the wavelet type Neural Network operators
(WNnf) (x) constructed by using Shannon wavelet function. Then one has for n = 30, 60
and for n = 150.

0.2 0.4 0.6 0.8 1.0

-6

-4

-2

2

4

6

f(x)=x-x2

(WN30f)(x)

(WN60f)(x)

(WN150f)(x)

Figure 6. Approximation of f(x) = x − x2 by Shannon Wavelet type NN
operator activated by Ramp function, for n = 30, 60 and n = 150.

Note 2. Since the compactly supported Daubechies wavelets are also an unconditional
orthonormal base of Lp(R), this allows us to investigate the convergence problem on Lp(R)
by means of our wavelet type NN operators (5). These will be the future studies and inves-
tigations on this topic.

Moreover, neurocomputing processes deal with multidimensional data,.then clearly multi-
variate Neural Networks have special interest.

Therefore, it is planned as further studies to expand the existing theory to cover the case
of multivariate functions and also to make image processing applications.
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Abstract. Developing estimators of finite population parameters such as mean, variance
and asymptotic mean squared error has been one of the core objectives of sample survey
theory and practice. Sample survey practitioners need to assess the properties of these
estimators so that better ones can be adopted. In survey sampling, the occurrence of non-
response affects inference and optimality of the estimators of finite population parameters. It
introduces bias and may cause samples not to follow the the distributions determined by the
original sampling design. To compensate for random non-response, imputation methods and
weighting techniques can be used. In this paper, a comparison between these two methods
of compensating for non-response has been done in two-stage cluster sampling. Simulation
results reveal tighter confidence interval lengths, smaller mean squared error values for the
estimators developed under the weighting method than its rival estimators obtained using
imputation method. Under mild assumptions, the weighting method is shown to be more
efficient than the imputation techniques in estimating a finite population mean.

2020 Mathematics Subject Classifications: 62D05, 62D10, 62G05

Keywords: Sampling With Replacement, Two-Stage Cluster Sampling, Bias and Mean
Squared Error.

1. Introduction

In the estimation of a finite population mean, a lot of significance is attached to efficient
and cost-effective survey sampling designs in sample surveys, see for instance, (cf. [1]) .
Careful design of samples based on random selection with known probabilities of population
elements should be considered. This gives a target sample of intended respondents where
each may provide responses to a set of survey questions that results in an array of responses
(cf. [23]) observed that non-response occurs if some of the expected responses are missing,
for instance where a whole vector of responses is missing for some sampled units or where
responses are obtained for some questions and not to others in the sample selected.
The basis for statistical inference is therefore formed by a sampling design that provides a
link between a sample and the population. As observed by (cf. [10]), a good sample survey
practise and efficient methods of compensating for non-response should be adopted.

1.1. Preliminaries. In sample surveys, non-response introduces bias in the estimation of a
finite population mean. It also causes samples to fail to follow the distributions determined
by the original sampling design. The use of regression models is recognized as one of the
procedures for reducing bias due to non-response using auxiliary information, for details
see (cf. [2]). In practise, information on the variables of interest is not available for non-
respondents but information on auxiliary variables may be available for non-respondents. To
reduce the bias and variance due to non-response, (cf. [13]) noted that it is desirable to
incorporate auxiliary data into the estimation process where the response probabilities are
mostly taken to be correlated with certain characteristics such as age, race and income for a
human population survey.

1.2. Methods of Compensating for Non-response. Imputation techniques and weight-
ing method are discussed in this paper in the following subsections.
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1.2.1. Imputation Methods. Imputation entails compensating for non-response values by proxy
values as observed by (cf. [20]). Imputation techniques have been used to account for non-
response in the study variable in the estimation of finite population mean. For instance, (cf.
[21]) applied compromised method of imputation to estimate a finite population mean under
two stage cluster sampling, though the method produced a large bias.

Following the procedure by (cf. [9]), let Y = 1
N

∑N
1 Yi represents the finite population mean

to be estimated. Besides, let a simple random sample, say, S with replacement be drawn from
the population, θ = 1, 2, . . . , N to estimate Y . The sample S of units has r responding units
(r < n) making a set R and (n − r) non-responding units with the subspace (n − r) having
the symbol RC in the population. For every unit i ∈ R, the value of the survey variable yi is
obtained.

However, imputed values are to be derived for the non-response set of units, that is, for every
i ∈ RC , since the yi values are missing. It is assumed that auxiliary data xi are known for
every i ∈ S. The value of the auxiliary, xi, imputes the non-response values when i ∈ RC ,
that is, for a sample S assume that the data xs = xi : i ∈ s are given and S = R ∪RC . Using
this set up, ratio method of imputation, an example of different imputation techniques, can
be defined as in equation (2). Using the notations of (cf. [17]), if the ith unit is to be imputed,

the value b̂xi is obtained, where b̂xi =
∑

i∈R yi∑
i∈R xi

. The data after imputation becomes

(1) y·i =

{
yi, if i ∈ R

b̂xi, i ∈ RC

For details, see (cf. [21]). The imputation ratio estimator is given by

(2) yRAT = yr
xn
xr

where xn = 1
n

∑
i∈s xi, xr =

1
r

∑
i∈R xi and yr =

1
r

∑
i∈R yi. The bias and the mean squared

error of the imputation ratio estimator due to (cf. [21]) are given below.

(3) B(yRAT ) =
(1
r
− 1

n

)
Y
(
C2
x − ρCxCy

)
where Cx = sx

X
, Cy =

sy
Y

and ρ =
Sxy

SxSy
. Sx and Sy are the standard deviations of X and Y

values respectively while Sxy is the co-variance between X and Y . The MSE is given by

(4) MSE(yRAT ) =
( 1
n
− 1

N

)
S2
y +

(1
r
− 1

n

)[
S2
y +R2

1S
2
x − 2R1Sxy

]
where R1 =

Y
X
. (cf. [1]) observed that though this method of imputation is better than other

existing techniques like mean and compromised method of imputation, its bias and MSE are
still large compared to rival approaches of compensating for non-response such as weighting
techniques.

1.2.2. Weighting Method. It has been observed by authors such as (cf. [16]) that non-response
causes loss of observations and therefore weighting means that the weights are increased for
all or almost all of the elements that fail to respond in a survey. For instance, (cf. [4]) and (cf.
[11]) discussed a modified Horvitz-Thompson estimator to correct for non-response problem
using the weighting strategy. The estimator used was defined by

ˆ̄yHT = N−1
N∑
k=1

(
ϕk ˆ̄pHT

)−1
ykτk(5)

where ˆ̄pHT is given by

ˆ̄pHT = N−1
N∑
k=1

ϕ−1
k γk

where yk, k ∈ U is the value of the kth survey variable taken from a sample s selected from a
finite population, U =

(
1, 2, · · · , N

)
, ϕk is the inclusion probability given by ϕk = pr(k ∈ s),

γk is the value of the kth respondent in the sample selected, s. The estimator ˆ̄yHT adjusts the
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weights by an unbiased estimator ˆ̄pHT , of the response probabilities of the population mean
which is given by

(6) P̄N = N−1
N∑
i=1

pi

Thus an approximate bias of the estimator ˆ̄yHT is given by

(7) Bias
(
ˆ̄yHT

)
= E(ˆ̄yHT )− Ȳ = Ȳ ∗ − Ȳ = ˆ̄P−1

N CpY

where

(8) Ȳ ∗ = N−1P−1
N

N∑
i=1

piyi

and

(9) CpY = N−1
N∑
i=1

(
pi − P̄N

)(
yi − Ȳ

)
.

If CpY is close to zero, the bias will be small, for more details see (cf. [20]). The adjusted
Horvitz-Thompson estimator, ˆ̄yHT , is an illustration of re-weighting measurements of respon-
dents without using auxiliary information. However, in this paper, auxiliary information is
used in the estimation procedure.

The population mean, Y = 1
N

∑N
1 Yi, is estimated by selecting a sample of size n at random

with replacement. If the responding units of item y are independent so that the probability
of unit j responding in cluster i is pij(i = 1, 2, · · · , n; j = 1, 2, · · · ,m), then following the
work of (cf. [18]), a weighted estimator, ˆ̄yI , for Ȳ is given by

(10) ˆ̄yI =
1∑

i,j∈swij

 ∑
i,j∈sr

wijyij +
∑

i,j∈sm

wijy
∗
ij


where wij = 1

πij
gives the survey weight tied to unit j in cluster i and πij = p[i, j ∈ s] is its

probability of inclusion, sr, is the set of r responding units to item y, sm is the set of m units
that failed to respond to item y so that r+m = n while y∗ij is the value imputed so that the

missing value yij is compensated for, (cf. [2]).

2. Main results

2.1. The proposed Estimator of Finite Population Mean. Consider a finite population
of size N consisting of M clusters with Nj elements in the jth cluster. A sample of m clusters
is selected so that n1i units respond and n2i units fail to respond. Let yij denote the value
of the survey variable y for unit j in cluster i, for i = 1, 2, · · · , N, j = 1, 2, · · · , Ni and let
population mean be given by

(11) Y =
1

N

M∑
i=1

Ni∑
j=1

Yij .

The proposed estimator is given by

(12)
ˆ
Y INW =

1

M

{ 1

n1i

∑
i∈s

∑
j∈s

yij +
1

n2i

∑
i∈s

∑
j /∈s

ŷij

}
.

where ŷij is an estimator of the non-response component of the sample. Assuming auxiliary
information, Xij , is known throughout, ŷij can be obtained using the improved Nadaraya-
Watson regression technique by

(13) ŷij = mINW (x̂ij) =

∑
i∈s
∑

j∈s
1
λij

K
(
x−Xij

λijb

)
Yij∑

i∈s
∑

j∈s
1
λij

K
(
x−Xij

λijb

)
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so that the estimator of finite population mean can be re-written as

(14)
ˆ
Y INW =

1

M

{ 1

n1i

∑
i∈s

∑
j∈s

yij +
1

n2i

∑
i∈s

∑
j /∈s

mINW (x̂ij)
}
.

A special case where n1i = n2i = n is assumed in this study. This simplifies mathematical
computations so that equation (15) can be re-written as

(15)
ˆ
Y INW =

1

Mn

{∑
i∈s

∑
j∈s

yij +
∑
i∈s

∑
j /∈s

mINW (x̂ij)
}
,

wheremINW (x̂ij) is the improved Nadaraya-Watson kernel regression estimator given in (??),
which is a weighted sum of the values of the survey variable Yij ’s. Data is generated using a
regression model given by

(16) Ŷij = m(x̂ij) + êij

where m(.) is an unknown smooth function of auxiliary random variables, Xij . It is assumed
that the error term, êij , satisfies the following conditions:

(17) E(êij) = 0, V ar(êij) = σ2
ij , Cov(êi, êj) = 0, for i ̸= j

Hence the unspecified function of the auxiliary random variables, m(x̂ij), is replaced by the
improved Nadaraya-Watson kernel estimator, mINW (x̂ij). The estimator can be re-written
as

(18) mINW (x̂ij) =
∑
i∈s

∑
j∈s

w(xij)Yij .

where w(xij) =

1
λij

K

(
x−Xij
λijb

)
∑

i∈s

∑
j∈s

1
λij

K

(
x−Xij
λijb

) are the improved Nadaraya-Watson kernel weights

where K(.) is a given kernel function assumed to be symmetrical; b is a smoothing parameter
while λij is the local bandwidth given by

(19) λij = {m(Xij/a)}−α.

where α is a sensitivity parameter which satisfies 0 ≤ α ≤ 1. It has been suggested by (cf.
[12]) that taking α = 1

2 produce good results. Since the choice of the kernel function is not
critical for the performance of the kernel regression estimator, a simplified Gaussian kernel
with mean 0 and variance 1 is used in this study. This is given by

(20) K(w) =
1√
2π

e−
(

w2

2

)
=

1√
2π

e
−

((x−Xij
λijb

)2
2

)

In this case, the improved Nadaraya-Watson kernel estimation at any point xij is given by

(21) ŷij = mINW (x̂ij) =

∑
i

∑
j

1√
2π
e
−

((x−Xij
λijb

)2
2

)
Yij

∑
i

∑
j

1√
2π
e
−

((x−Xij
λijb

)2
2

)
where b is the bandwidth while λij is given in equation (??) due to (cf. [7]).
This provides a way of estimating the non-response values of the survey variable Yij , in the

ith cluster given the auxiliary values xij , for a specified kernel function.

2.2. The Asymptotic Bias of the Proposed Estimator. The expected value of the
proposed estimator is given by

(22) E(
ˆ
Y INW ) =

1

Mn

{ n∑
i=1

m∑
j=1

Yij +

N∑
i=n+1

M∑
j=m+1

mINW (x̂ij)

}
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Re-writing equation (13) using the property of symmetry associated with Nadaraya-Watson
estimator,

(23) mINW (x̂ij) =

∑
i∈s
∑

j∈sK
(
Xij−xij

λijb

)
Yij∑

i∈s
∑

j∈sK
(
Xij−xij

λijb

) , i = 1, 2, · · · , n; j = 1, 2, · · · ,m

Following the procedure by (cf. [22]), equation (23) can be re-written as

(24) mINW (x̂ij) =
1

g(x̂ij)

 1

mn(λijb)

∑
i

∑
j

K

(
Xij − xij

λijb

)
Yij


where g(x̂ij) is the estimated marginal density of auxiliary variables Xij . The bias of the
estimator can be written as

(25) Bias (
ˆ
Y INW ) = E(

ˆ
Y INW − Y )

(26)

Bias (
ˆ
Y INW ) = E

{
1

Mn

[ n∑
i=1

m∑
j=1

Yij +
N∑

i=n+1

M∑
j=m+1

mINW (x̂ij)

]

− 1

Mn

[ n∑
i=1

m∑
j=1

Yij +

N∑
i=n+1

M∑
j=m+1

Yij

]}

which reduces to

(27) Bias (
ˆ
Y INW ) =

1

Mn
E


N∑

i=n+1

M∑
j=m+1

mINW (x̂ij)−
N∑

i=n+1

M∑
j=m+1

Yij


Re-writing the regression model given by Yij = m(Xij) + eij as

(28) Yij = m(xij) +
[
m(Xij)−m(xij)

]
+ eij

and substituting it in equation (24) gives

(29)

mINW

(
x̂ij
)
=

1

g(x̂ij)

[
1

mn(λijb)

∑
i

∑
j

K
(Xij − xij

λijb

)(
m(xij) +

[
m(Xij)−m(xij)

]
+ eij

)]
Hence the first term in equation (27) before taking expectation is given as:

(30)

1

Mn


1

mnb

∑N
i=n+1

∑M
j=m+1K

(
Xij−xij

λijb

)
Yij

g(x̂ij)


=

1

Mng(x̂ij)

 1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)
m(xij)

+
1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)[
m(Xij)−m(xij)

]

+
1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)
eij


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Simplifying equation (30), the following is obtained:

(31)

1

Mn

 1

mn(λijb) g(x̂ij)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)
Yij


=

1

Mn

(
1

mn(λijb) g(x̂ij)

){ N∑
i=n+1

M∑
j=m+1

g(x̂ij)m(xij)

+m1(x̂ij) +m2(x̂ij)

}
,

where

(32) m1(x̂ij) =
1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)[
m(Xij)−m(xij)

]
.

(33) m2(x̂ij) =
1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)
eij .

Taking conditional expectation of equation (31) leads to

(34)

E
[ N∑
i=n+1

M∑
j=m+1

mINW (x̂ij)/xij

]
=

1

Mn
E

[
1

mn(λijb)

N∑
i=n+1

M∑
j=m+1

[
m(xij)

+
m1(x̂ij)

g(x̂ij)
+

m2(x̂ij)

g(x̂ij)

]]
.

The following theorem due to (cf. [8]) and applied by (cf. [19]) was used in obtaining asymp-
totic bias and variance of the estimator using conditional expectations.

Theorem 2.1. Let K(w) be a symmetric density function with
∫
wk(w)dw = 0 and

∫
w2k(w)dw =

k2. Assume n and N increase together such that n
N → π with 0 < π < 1. Besides, assume the

sampled and non-sampled values of x are in the interval [c, d] and are obtained by densities ds
and dp−s respectively where both are bounded away from zero on [c, d] with continuous second
derivatives. If for any variable Z,E(Z/U = u) = A(u) +O(B) and V ar(Z/U = u) = O(C),

then Z = A(u) +Op(B + C
1
2 ).

Using this theorem, the asymptotic bias can further be derived and simplified. From the
conditions of the error term stated in (17), it follows that E(eij/Xij) = 0. Therefore,
E
[
m2(x̂ij) = 0

]
. Thus, E

[
m1(x̂ij)

]
can be obtained as follows:

(35)

E

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

( 1

mn(λijb)

)
E

{ N∑
i=n+1

M∑
j=m+1

K

(
Xij − xij

λijb

)

×
[
m(Xij)−m(xij)

]}
.

Using substitution and change of variable technique given by

(36)
w =

V−xij

λijb

V = xij + (λijb)w
dV = (λijb)dw


Equation (35) can be simplified to:

(37)

E

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

{
Mn−mn

mn

∫
k(w)

[
m(xij + (λijb)w)

−m(xij)

] ∫
g
(
xij + (λijb)w

)
dw

}
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Using Taylor’s series expansion about the point xij , the kth order kernel can be derived as
follows:

(38)
g
(
xij + (λijb)w

)
= g(xij) + g′(xij)(λijb)w +

1

2
g′′(xij)(λijb)

2w2 + · · ·

+
1

k!
gk(xij)(λijb)

kwk + o((λijb)
2).

Similarly,

(39)
m
(
xij + (λijb)w

)
= m(xij) +m′(xij)(λijb)w +

1

2
m′′(xij)(λijb)

2w2 + · · ·

+
1

k!
mk(xij)(λijb)

kwk + o((λijb)
2).

Therefore, expanding equation (37) up to order o((λijb)
2) and simplifying gives

(40)

E
N∑

i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

{(Mn−mn

mn

)
g(xij)m′(xij)(λijb)

∫
wk(w)dw

+
(Mn−mn

mn

)
g′(xij)m′(xij)(λijb)

2

∫
w2k(w)dw

+
(Mn−mn

mn

)1
2
g(xij)m′′(xij)(λijb)

2

×
∫

w2k(w)dw + o((λijb)
2)

}
.

Using the conditions due to (cf. [8]) given by
∫∞
−∞ k(w)dw = 1,

∫∞
−∞wk(w)dw = 0 and∫∞

−∞w2k(w)dw = dk, the derivation in equation (40) can further be simplified to obtain:

(41)

E
N∑

i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

(Mn−mn

mn

)[
g′(xij)m′(xij)

+
1

2
g(xij)m′′(xij)

]
(λijb)

2dk + o((λijb)
2).

Hence the expected value of the second term in equation (34) then becomes:

(42)

E
N∑

i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

{(Mn−mn

mn

)[ 1

2g(x̂ij)
m′′(xij)g(xij)

+
g′(xij)m′(xij)

g(x̂ij)

]
(λijb)

2dk + o((λijb)
2)

}
.

Simplifying equation (42) gives:

(43) E

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

Mn

{(Mn−mn

mn

)
(λijb)

2dkC(x) + o((λijb)
2)

}
,

where C(x) = [g(x̂ij)]
−1
[
1
2m′′(xij)g(xij) + g′(xij)m′(xij)

]
and dk =

∫
w2k(w)dw.

Using equation of the bias given in (25) and the conditional expectation in equation (34), the
following equation for the conditional bias of the estimator was obtained:

(44) Bias (
ˆ
Y INW /xij) =

1

Mn

{(Mn−mn

mn

)
(λijb)

2dkC(x) + o((λijb)
2)

}
.

In the next subsection, the asymptotic variance of the estimator is also derived.

2.3. Asymptotic Variance of the Proposed Estimator. Using equation (15), the con-
ditional variance of the estimator is given as

V ar
( ˆ
Y INW /xij

)
=V ar

{
1

Mn

{ n∑
i=1

m∑
j=1

Yij +
N∑

i=n+1

M∑
j=m+1

mINW (x̂ij)

}}
(45)

=
( 1

Mn

)2
V ar

{ n∑
i=1

m∑
j=1

Yij +
N∑

i=n+1

M∑
j=m+1

mINW (x̂ij)

}
,(46)
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where mINW (x̂ij) is given by

(47) mINW

(
x̂ij

)
=

1

g(x̂ij)

[
1

mn(λijb)

∑
i

∑
j

K
(Xij − xij

λijb

)
Yij

]
,

where g(x̂ij) = 1
mn(λijb)

∑
i

∑
j K

(
x−Xij

λijb

)
is the estimated marginal density of auxiliary

variables Xij , for details see (cf. [15]). Re-writing the regression model Yij = m(Xij) + eij

as Yij = m(xij) +
[
m(Xij)−m(xij)

]
+ eij and substituting in equation (47) leads to

(48)

V ar
( ˆ
Y INW /xij

)
=
( 1

Mn

)2
V ar

{
n∑

i=1

m∑
j=1

Yij

+

(
1

mn(λijb) g(x̂ij)

){ N∑
i=n+1

M∑
j=m+1

g(x̂ij)m(xij) +m1(x̂ij) +m2(x̂ij)

}}
.

From equation (33),

(49) m2(x̂ij) =
1

mnb

N∑
i=n+1

M∑
j=m+1

K
(Xij − xij

λijb

)
eij

Hence

(50) V ar
N∑

i=n+1

M∑
j=m+1

[
m2(x̂ij)

]
=

1

(Mn)2

(
Mn−mn

mn(λijb)

)2 n∑
i=1

m∑
j=1

V ar(Dx),

where Dx = K
(Xij−xij

λijb

)
eij . Expressing equation (50) in terms of expectation the following

equation is obtained

(51) V ar
N∑

i=n+1

M∑
j=m+1

[
m2(x̂ij)

]
=

1

(Mn)2

[
(Mn−mn)2

mn(λijb)2

]{
E[Dx]

2 − [E(Dx)]
2

}
.

Using the fact that the conditional expectation E(eij/Xij) = 0, the second term in equation
(51) reduces to zero. Therefore,

(52) V ar

N∑
i=n+1

M∑
j=m+1

[
m2(x̂ij)

]
=

1

(Mn)2

[
(Mn−mn)2

mn(λijb)2

]
σ2
ij ,

where E
(
eij/Xij

)2
= σ2

ij .
Let X = Xij , and x = xij and make the following substitutions

(53)
w = X−x

λijb

X − x = (λijb)w
dX = (λijb)dw.


so that

(54) V ar
N∑

i=n+1

M∑
j=m+1

[
m2(x̂ij)

]
=

(Mn−mn)2

mn(λijb)2(Mn)2

∫
K

(
X − x

λijb

)2

σ2
x g(X)dX

Using the change of variables technique and simplifying, equation (54) reduces to

(55) V ar

N∑
i=n+1

M∑
j=m+1

[
m2(x̂ij)

]
=

(Mn−mn)2

mn(λijb)(Mn)2

∫
K(w)2σ2

x g(x)dw + o
( 1

mn(λijb)

)
.
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Following the same procedure for getting the variance of m2(x̂ij),

V ar
∑N

i=n+1

∑M
j=m+1

[
m1(x̂ij)

]
can similarly be obtained as follows:

(56)

V ar

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

1

(Mn)2
V ar

N∑
i=n+1

M∑
j=m+1

[
1

mn(λijb)

n∑
i=1

m∑
j=1

K

(
Xij − xij

λijb

)]
×
[
m(Xij)−m(xij)

]
Equation (56) can be re-written as

(57)
V ar

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

(Mn−mn)2

mnb2(Mn)2
V arK

(
Xij − xij

λijb

)2[
m(Xij)

−m(xij)
]2
g(X)dX

where X = (λijb)w + x so that dX = (λijb)dw. Changing variables and applying Taylor’s
series expansion about the point xij leads to

(58)
V ar

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

(Mn−mn)2

mn(λijb)2(Mn)2

∫
K(w2)

[
m(x+ (λijb)w)−m(x)

]2
× g(x+ (λijb)w)dw

which gives

(59)
V ar

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
=

(Mn−mn)2

mn(λijb)2(Mn)2

∫
K(w2)

[
m(x) +m′(x)(λijb)w

+ · · · −m(x)
]2(

g(x) + g′(x)(λijb)w
)
dw.

Following the procedure by (cf. [3]) and simplifying, equation (59) reduces to

(60) V ar

N∑
i=n+1

M∑
j=m+1

[
m1(x̂ij)

]
= o

[
(Mn−mn)2b2

mn(λijb)

]
.

For large samples, as n → N,m → M and b → 0, then mn(λijb) → ∞. Hence the variance

in equation (59) asymptotically tends to zero, i.e, V ar
∑N

i=1

∑M
j=1

[
m1(x̂ij)

]
→ 0 so that the

variance of the estimator of the population mean reduces to

(61) V ar
( ˆ
Y INW /xij

)
=

(Mn−mn)2

mn(λijb)(Mn)2

N∑
i=n+1

M∑
j=m+1

V ar

[
m(xij) +

m1(x̂ij) +m2(x̂ij)

g(x̂ij)

]
.

Simplifying equation (61) leads to

(62) V ar
( ˆ
Y INW /xij

)
=

(Mn−mn)2

mn(λijb)(Mn)2
[
g(x̂ij)

]2V ar

{ N∑
i=n+1

M∑
j=m+1

[
m2(x̂ij)

]}
.

Substituting equation (55) into (62) yields the following:

(63)

V ar
( ˆ
Y INW /xij

)
=

1

(Mn)2

{
(Mn−mn)2

∫
K(w)2σ2

xij
dw

mn(λijb)g(x̂ij)
+ o

[
(Mn−mn)2

mn(λijb)

+
1

mn(λijb)

]}
.

2.4. Mean Squared Error of the Proposed Estimator. The conditional MSE of the
estimator of finite population mean combines the conditional squared bias and the conditional
variance of the estimator, that is,

(64) MSE(
ˆ
Y INW /xij) = V ar(

ˆ
Y INW /xij) +Bias2(

ˆ
Y INW /xij)
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Which on simplification leads to

(65)

MSE
( ˆ
Y /Xij = xij

)
=

1

(Mn)2

{
(Mn−mn)2H(w)σ2

xij

mn(λijb)g(x̂ij)

+

[
(Mn−mn)2

4(mn)2(Mn2)
(λijb)

2d2k

[
m′′(xij)g(xij) +

2g′(xij)m′(xij)
g(x̂ij)

]2
+ o

(
1

Mn

{(Mn−mn)2

mn(λijb)
+

1

mn(λijb)

})]}
where H(w) =

∫
K(w)2dw, dk =

∫
w2K(w)dw.

From equation (65), it is noted that if the sample size is large, that is as n → N and

m → M , theMSE of
ˆ
Y INW due to the kernel tends to zero for a sufficiently small bandwidth.

The estimator
ˆ
Y is therefore asymptotically consistent since its MSE converges to zero in

probability.

3. Simulation Study

A simulation experiment was conducted using R code in order to compare the performance
of the proposed estimator in two-stage cluster sampling with the transformed estimator due
to (cf. [5]) and the non-parametric regression estimator due to (cf. [6]). An asymptotic
framework is used where both the population number of clusters and the sample number of
clusters are large. The number of clusters within each cluster, Ni, is held constant so that
no cluster dominates the population.
Both linear and non-linear mean functions of auxiliary random variables due to (cf. [6]) were
considered in generating data, where x ∈ (0, 1). The equations of the mean functions used in
simulating the data are given in table 1 below.

Table 1. Equations of Mean Functions Simulated

Mean function Equation

Linear m1(x̂) = 1 + 2(x− 0.5)
Quadratic m2(x̂) = 1 + 2(x− 0.5)2

Sine m3(x̂) = 2 + sin(2πx)
Exponential m4(x̂) = exp(−8x)

Bump m5(x̂) = 1 + 2(x− 0.5) + exp
{
− 200(x− 0.5)2

}
Jump m6(x̂) = 1 + 2(x− 0.5)Ix≤0.65 + 0.65Ix≥0.65

The population auxiliary values, xij , of size M = 2000 are generated as identical and inde-
pendently distributed uniform (0, 1) random variables. The survey values are only known for
the respondents in the selected sample. Using the auxiliary values, the non-response values
are generated, that is, for every generated value xij , i = 1, 2, · · · ,M ; j = 1, 2, · · · , Ni, the
mean survey non-response values are generated as

(66) ŷij =
1

M

{m(x̂ij)

Ni
+

êij
Ni

}
where êij are identically and independently distributed normal random variables with mean
zero and variance one. Besides, a Gaussian kernel with mean zero and variance one was
used. A Gaussian kernel was used since it has smooth and continuous derivatives at every
data point. Besides, an optimal bandwidth generated using cross-validation technique due
to (cf. [14]) was used. It has been noted by (cf. [14]) that this bandwidth would lead to
more informative estimates compared to other choices. The local bandwidth, λij , given in
equation (??) were generated using the algorithm due to (cf. [12]).

At stage one, a sample of clusters is generated first by simple random sampling using a
sample of size m = 200. At stage two, sub-samples of elements within every selected cluster
are generated by simple random sampling with replacement using a random sample of size
ni. The non-response mean survey values were then generated using equation (66). The
estimates of finite population mean were then computed using the estimator in equation
(15). The values of bias and mean squared error values were also computed. The 95%
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confidence intervals were then constructed for the estimators of the finite population means
for comparative purposes.

4. Simulation Results

The values of the bias, mean squared error and confidence interval lengths are given in the

following tables. Note that
ˆ̄̄
YINW is the estimator of finite population mean proposed in this

study,
ˆ̄̄
YTDM is the transformation of data method estimator of finite population mean due

to (cf. [5]) whereas
ˆ̄̄
YREG is the non-parametric regression estimator due to (cf. [6]). Both

ˆ̄̄
YTDM and

ˆ̄̄
YREG were used for comparative purposes with the proposed estimator.

Table 2. Summary Results of Bias

Estimators
ˆ̄̄
YINW

ˆ̄̄
YTDM

ˆ̄̄
YREG

Linear -0.00213 -0.1667 -0.3312
Quadratic -0.0132 0.04171 -0.0966

Sine -0.0521 -0.6416 -1.2311
Exponential -0.0041 0.3592 0.7225

Bump -0.0032 -0.2358 -0.4685
Jump -0.0188 -0.2466 -0.4743

The biases of the estimators considered are presented in table 2 above. Negative values of
the bias imply underestimation while positive values of the bias indicate overestimation of
the finite population mean by the different estimators. The proposed estimator has relatively
smaller values of the bias followed by transformation of data method estimator due to (cf.
[5]). The non-parametric-based estimator due to (cf. [6]) has larger values compared to the
other two estimators. It is also observed that the three estimators have relatively closer values
of the bias in the quadratic mean function though the transformation of data method has
positive bias at this mean function. Generally, among the three estimators of finite population
mean, the proposed estimator using improved Nadaraya-Watson kernel regression technique
performs better than the other two estimators in terms of bias.

Table 3. Summary Results of MSE Values

Estimators
ˆ̄̄
YINW

ˆ̄̄
YTDM

ˆ̄̄
YREG

Linear 0.0334 0.1097 0.1321
Quadratic 0.0093 0.1455 0.5835

Sine 0.4215 1.5157 1.555
Exponential 0.3430 0.5220 1.3780

Bump 0.0634 0.2195 0.2508
Jump 0.2250 0.2951 1.1611

Mean squared error combines both the variance and the squared bias terms of an estimator.
The mean squared error values presented in tables 3 were simulated using the different mean
functions indicated. The quadratic mean function gives the smallest value of the mean squared
error of the proposed estimator followed by the linear function. The estimator due to (cf. [6])
has the largest value of the mean squared error in the jump function. Generally, it is noted
from table 3 that the mean squared error values for the proposed estimator are relatively
smaller than the rest of the estimators considered. The transformation of data method
estimator due to (cf. [5]) follows closely in the second place with smaller mean squared error
values compared to non-parametric regression-based estimator due to (cf. [6]). From this
comparison of the mean squared error values, it can be concluded that the proposed estimator
is more efficient than the other two estimators considered. It has got smaller MSE values in
all the mean functions and thus outperforms the others in terms of efficiency.
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Table 4. Summary Results of 95% CI Lengths

Estimators
ˆ̄̄
YINW

ˆ̄̄
YTDM

ˆ̄̄
YREG

Linear 0.7164 1.2984 1.4249
Quadratic 0.8270 1.4951 2.994

Sine 1.5269 2.5451 4.888
Exponential 2.2958 2.8322 4.6016

Bump 0.9872 1.8365 1.9630
Jump 1.8594 2.1297 4.2239

The 95% upper and lower confidence intervals were constructed for the estimators of finite
population mean. Confidence interval lengths were then obtained. The results are given in
table 4. From the values obtained, it is noted that the confidence interval lengths for the
proposed estimator are much tighter than those of the estimators due to (cf. [6]) and (cf.
[5]). Hence, at 95% level of confidence, the estimator proposed in this study performs better
than its rival estimators.

5. Conclusion

This study has developed an estimator of finite population mean in two-stage cluster
sampling assuming random non-response occurs in the survey variable in the second stage of
cluster sampling. Complete auxiliary information is assumed to be available in both stage
one and stage two of cluster sampling. Kernel weights developed using improved Nadaraya-
Watson regression technique were used in the estimation process. The theoretical properties
of the proposed estimator such as asymptotic bias, variance and mean squared error were
derived. Simulation results show that the proposed estimator has smaller values of the bias,
smaller mean squared error values and tighter confidence interval lengths compared to the
other estimators. Therefore, the estimator of finite population mean proposed in this study
dominates the estimators due to (cf. [6]) and (cf. [5]) respectively.
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A, JSTOR, 359-372.

Nelson Kiprono Bı̇ı̇1∗ corresponding author
Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.
Christopher Ouma Onyango2

Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya

Email(s): nkiprono@strathmore.edu1∗ (corresponding author), christopher@ku.ac.ke2

51



2nd International Workshop: Constructive Mathematical
Analysis

A note on generation of all Pythagorean triples
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Abstract. There exist several techniques used to generate Pythagorean triples. The
most effective formula for generating Pythagorean triples is the Euclid’s formula. Whereas
the Euclid’s formula generate infinitely many Pythagorean triples, it does not generate all of
them. For instance, the Euclid’s formula generates the triple (3, 4, 5) but does not generate
(4, 3, 5), in which case a transposition is needed. In addition, the triple (9, 12, 15) cannot
be generated directly from the Euclid’s formula but rather a multiplier to the triple (3, 4, 5)
does so. In this note, we establish a formula which generates all Pythagorean triples, primitive
and non-primitive, without using a transformation and without using a multiplier. .

2020 Mathematics Subject Classifications: 11D09, 14G50, 11A99

Keywords: Primitive Pythagorean triples, non-primitive Pythagorean triples, multipli-
ers, transpositions, cryptography.

1. Introduction

A Pythagorean Triple (PT) is a triple of positive integers (a, b, c), which satisfies the
Pythagorean equation

a2 + b2 = c2,

where c represents the length of the hypotenuse, a and b represent the lengths of the other
two sides (called legs) of a right triangle. In other words a Pythagorean triple represents the
lengths of the sides of a right triangle where all the three sides have integer lengths. We say
a Pythagorean triple (a, b, c) is primitive if the numbers a, b and c are pairwise co-prime
[6].

We first note the parity of a, b and c in primitive triples, that is their values modulo 2.
Since 02 ≡ 0, 12 ≡ 1, 22 ≡ 0, and 32 ≡ 1 mod 4, the only squares modulo4 are 0 and 1.
Letting A = a2, B = b2, and C = c2, we have the following solutions to A+B ≡ C mod 4 :

0 + 0 ≡ 0; 0 + 1 ≡ 1; 1 + 0 ≡ 1.(1)

(1+1 ≡ 2 is not a solution because 2 is not a square modulo 4.) The first of these solutions
corresponds only to non-primitive triples where a, b and c are all divisible by 2. Therefore
any primitive triple corresponds to one of the other two solutions. In either case, C is odd,
and exactly one of A and B is always odd. Thus c is odd, and exactly one of a and b is odd.

Many formulas for generating Pythagorean triples with particular properties have been
since the time of Euclid and also by several other scholars, see [1, 2, 3, 5, 8, 9, 10, 12]. In
[4], integer solutions to the Pythagorean equation are determined by finding positive integers
r, s and t such that r2 = 2st. The proof of this method is given in [14] and it uses a bijec-
tion which entails transforming some grid squares into an object that uniquely determines a
Pythagorean triple.

In [11], McCullough uses the height and excess enumeration to generate Pythagorean
triples. In this method, for a Pythagorean triple (a, b, c), the height h is just c − b, and
the excess e is a + b − c. The term excess arises from the fact that e is simply the extra
distance one must travel when going along the two legs instead of the hypotenuse. In [13],
Roy and Sonia uses the difference between one leg and hypotenuse to formulate a method of
generating Pythagorean triples.
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Euclid’s formula presents the most common way of generating Pythagorean triples. It
states that primitive Pythagorean triples (a, b, c) in which b is even, are generated by the
formulae

a = n2 −m2, b = 2nm, c = m2 + n2,

where n > m > 0; m,n ∈ Z+, for any pair of co-prime positive integers of opposite parity. A
triple generated using this method is primitive if (n, m) = 1 and if n and m are of opposite
parity [6, 15, 16]. In this formula, a convention is made in which a is always odd and b is
always even, since otherwise we can rename the variables of a given triple to obtain this.
Therefore, using this formula, a Primitive Pythagorean Triple has a unique representation
(a, b, c), where b is even and a and c are odd. To obtain the other set of solutions (b, a, c),
a transformation is required. We address this problem in the subsequent sections.

2. Unit Circle

In this section, we use a parametrization of the Unit Circle to find rational points on the
Unit Circle (point (x, y) satisfying the equation x2+y2 = 1, where both x and y are rational
numbers).

Consider the lines passing through the point (−1, 0) on the Unit Circle. Let t = m be
the slope of one such a line. Notice that every line through (−1, 0) intersects the circle at
exactly one point. Next, we point out that since the distance from (−1, 0) to the origin is 1,
the line with slope t will have a y−intercept of (0, t). Thus, except the vertical line x = −1,
the other lines have equations of the form

y = tx+ t.(2)

Moreover, each of these lines cuts the circle in exactly two points, one of which is (−1, 0).
Let us find the other point.

Substituting (2) into the equation of the Unit Circle gives

x2 + t2(x+ 1)2 = 1,

or

(1 + t2)x2 + 2t2x+ (t2 − 1) = 0.(3)

Solving (3) for x, we find

x =
−2t2 ±

√
(4t4 − 4(1 + t2)(t2 − 1))

2(1 + t2)

= −1 or
1− t2

1 + t2

and y = t(x+ 1) = 0 or t(1−t2

1+t2
+ 1) = 2t

1+t2
.

Thus, we have a parametrization of the Unit Circle, excluding the point (−1, 0), with
parameter t :

x(t) =
1− t2

1 + t2
; y(t) =

2t

1 + t2
.(4)

It can easily be checked that this is indeed the Unit Circle by substituting into the Carte-
sian equation x2 + y2 = 1.

Substituting any rational number for the parameter t in (4) will give a rational number.
For example, if t = 1, then x = 0 and y = 1. If t = 1

2 , then x = 3
5 , y = 4

5 and if t = 1
5 then
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x = 24
26 = 12

13 , y = 10
26 = 5

13 , and so on. Each rational point yields a Pythagorean Triple. For
example,

(
3

5
)2 + (

4

5
)2 = 1

implies that (3, 4, 5) is a Pythagorean Triple;

(
24

26
)2 + (

10

26
)2 = 1

implies that (24, 10, 26) is a Pythagorean Triple; and the simplified form of this equation

(
12

13
)2 + (

5

13
)2 = 1

yields the Pythagorean Triple (12, 5, 13).

Pythagorean Triples

Let (x, y) = (1−t2

1+t2
, 2t
1+t2

) be a parametrization of the Unit Circle x2+y2 = 1, where t is the

slope of any line through the point (−1, 0) and cutting the circle at (x, y). For any t with
0 < t < 1, the parametric equations x(t) and y(t) yield Pythagorean Triples (a, b, c). In the
table below, we enumerate some Triples for t = r

s < 1, where 0 < r < s < 10, and (r, s) = 1.

s r t x y PT = (a, b, c) PPT = (a, b, c)

2 1 1
2

3
5

4
5 (3, 4, 5) (3, 4, 5)

3 1 1
3

8
10

6
10 (8, 6, 10) (4, 3, 5)

3 2 2
3

5
13

12
13 (5, 12, 13) (5, 12, 13)

4 1 1
4

15
17

8
17 (15, 8, 17) (15, 8, 17)

4 3 3
4

7
25

24
25 (7, 24, 25) (7, 24, 25)

5 1 1
5

24
26

10
26 (24, 10, 26) (12, 5, 13)

5 2 2
5

21
29

20
29 (21, 20, 29) (21, 20, 29)

5 3 3
5

16
34

30
34 (16, 30, 34) (8, 15, 17)

6 1 1
6

35
37

12
37 (35, 12, 37) (35, 12, 37)

6 5 5
6

11
61

60
61 (11, 60, 61) (11, 60, 61)

7 1 1
7

48
50

14
50 (48, 14, 50) (24, 7, 25)

7 2 2
7

45
53

28
53 (45, 28, 53) (45, 28, 53)

7 3 3
7

40
58

42
58 (40, 42, 58) (20, 21, 29)

7 4 4
7

33
65

56
65 (33, 56, 65) (33, 56, 65)

8 1 1
8

63
65

16
65 (63, 16, 65) (63, 16, 65)

8 3 3
8

55
73

48
73 (55, 48, 73) (55, 48, 73)

8 5 5
8

39
89

80
89 (39, 80, 89) (39, 80, 89)

8 7 7
8

15
113

112
113 (15, 112, 113) (15, 112, 113)

9 1 1
9

80
82

18
82 (80, 18, 82) (40, 9, 41)

9 2 2
9

77
85

36
85 (77, 36, 85) (77, 36, 85)

9 4 4
9

65
97

72
97 (65, 72, 97) (65, 72, 97)

9 5 5
9

56
106

90
106 (56, 90, 106) (28, 45, 53)

9 7 7
9

32
130

126
130 (32, 126, 130) (16, 63, 65)

9 8 8
9

17
145

144
145 (17, 144, 145) (17, 144, 145)

10 1 1
10

99
101

20
101 (99, 20, 101) (99, 20, 101)

10 3 3
10

91
109

60
109 (91, 60, 109) (91, 60, 109)

10 7 7
10

51
149

140
149 (51, 140, 149) (51, 140, 149)

10 9 9
10

19
181

180
181 (19, 180, 181) (19, 180, 181)

Table 1. Triples for values of t with 0 < r < s < 10.
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Note 2.1. We note that this method is incapable of generating all the Pythagorean triples.
For instance, the triple (4, 3, 5) cannot be generated directly. A transposition on the triple
(3, 4, 5) is applied to obtain (4, 3, 5). In addition the triple (9, 12, 15) requires a multiplier
on (3, 4, 5). We establish a formula that generates all Pythagorean triples without need for
either transpositions or multipliers.

Theorem 2.2. Let (a, b, c) be a primitive Pythagorean triple with b even. Then there exist
relatively prime positive integers m < n having distinct parities (i.e. one even and one odd)
such that

a = n2 −m2, b = 2nm, c = n2 +m2.(5)

In Table 2, we generate a few examples of Pythagorean triples using equation (5). We can
obtain an equivalent formula to Theorem 2.2 from the equation a2 + b2 = c2 by writing

a2 = c2 − b2 = (c− b)(c+ b)

in place of b2 = c2 − a2, for a given primitive Pythagorean triple (a, b, c).

n m a = n2 −m2 b = 2nm c = n2 +m2 DL(c, a) = 2m2 DL(c, b) = u2

2 1 3 4 5 2 1

3 1 8 6 10 2 4
3 2 5 12 13 8 1

4 1 15 8 17 2 9
4 2 12 16 20 8 4
4 3 7 24 25 18 1

5 1 24 10 26 2 16
5 2 21 20 29 8 9
5 3 16 30 34 18 4
5 4 9 40 41 32 1

Table 2. Examples of Pythagorean triples generated from equation (5).

Theorem 2.3. Every primitive Pythagorean triple (a, b, c) with a odd and b even can be
obtained by using the formulas

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ⩾ 1 are chosen to be any odd integers with no common factors.

Notice that Theorems 2.2 and 2.3 are equivalent under the substitution t = n − m, s =
n+m.

Remark 1. Let

(a, b, c) = (n2 −m2, 2nm, n2 +m2),

be a primitive Pythagorean triple, where n > m, (n, m) = 1 and n and m are of opposite
parity.

The two methods in Theorems 2.2 and 2.3, like many others will require a transposition.
For instance in both b is always even whenever (a, b, c) is primitive.

In the following section, we consider a formula which is able to generate all Pythagorean
triples without need for either multipliers of transpositions.
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3. Generating All Pythagorean Triples

It can be seen that the difference formula does not generate all Pythagorean triples. For
instance the triple (9, 12, 15) cannot be generated directly by the formula but rather ap-
plying a multiplier of 3 to the triple (3, 4, 5) does so. Moreover, for every primitive triple
(a, b, c) generated by the formula, the corresponding primitive triple (b, a, c) cannot be
directly generated, a transposition is required.

If (a, b, c) is a Pythagorean triple, the triple (b, a, c) is called its co-triple. In this section,
we illustrate an expression which generates all Pythagorean triples uniquely, as discussed
below.

Proposition 3.1. Let (a, b, c) be a Pythagorean triple. Then every Pythagorean triple can
be generated by the formula:

(a, b, c) =

(√
PQ,

P −Q

2
,
P +Q

2

)
,(6)

for some positive integers P, Q.

Proof. A Pythagorean triple (a, b, c) satisfies the equation a2 + b2 = c2. From this we see
that a2 = c2 − b2 = (c+ b)(c− b). Let P = c+ b and Q = c− b. Clearly P > Q. Solving for c
and b, one obtains:

P +Q = 2c ⇔ c =
P +Q

2

and

P −Q = 2b ⇔ b =
P −Q

2
.

Since P and Q are integers, P and Q are either both even or both odd. So for each a, a2 is
a product of two factors P and Q, with P > Q > 0.
Next, suppose c = b+ d where d is the difference between c and b, then

a2 + b2 = (b+ d)2,

which simplifies to

a2 = 2bd+ d2

or

a2 = d(2b+ d).(7)

Substitute P−Q
2 for b in (7) to obtain:

a2 = d[2(P −Q) + d] = PQ

⇔ dP − dQ+ d2 = PQ

⇔ dP + d2 = (P + d)Q

⇔ d(P + d) = (P + d)Q.

Thus d = Q. So a =
√
PQ, where P > Q and positive integers P, Q are either both odd or

both even. Then

(a, b, c) =

(√
PQ,

P −Q

2
,
P −Q

2

)
.

Next, we show that this is a Pythagorean triple, that is,(√
PQ

)2
+

(
P −Q

2

)2

= PQ+
P 2 − 2PQ+Q2

4

=
P 2 + 2PQ+Q2

4

=

(
P +Q

2

)2

.

□
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For every primitive Pythagorean triple (a, b, c) one can easily obtain the corresponding
co-triple (b, a, c) from (6) as illustrated in the corollary below:

Corollary 3.2. If P = u2 and Q = v2 where u, v are relatively prime odd positive integers,
such that u > v, then (a, b, c) is a primitive Pythagorean triple with a odd. The corresponding

co-triple is generated when P = 2
(
u+v
2

)2
and Q = 2

(
u−v
2

)2
.

Proof. Let P = u2 and Q = v2, then by Proposition 3.1, we obtain

(a, b, c) =

(
uv,

u2 − v2

2
,
u2 + v2

2

)
.(8)

Clearly, if u > v > 0 are odd integers such that (u, v) = 1, then (8) is a primitive Pythagorean
triple with a odd.

If P = 2
(
u+v
2

)2
and Q = 2

(
u−v
2

)2
, then

√
PQ =

√
2

(
u+ v

2

)2

2

(
u− v

2

)2

=
u2 − v2

2
= b,

P −Q

2
=

√
2
(
u+v
2

)2 − 2
(
u−v
2

)2
2

=
u2 + 2uv + v2 − u2 + 2uv − v2

4
=

4uv

4
= uv = a,

and

P +Q

2
=

√
2
(
u+v
2

)2 − 2
(
u−v
2

)2
2

=
u2 + 2uv + v2 + u2 − 2uv + v2

4
=

u2 + v2

2
= c.

□

Non-primitive Pythagorean triples can be generated as described below:

Corollary 3.3. If P and Q are not relatively prime, then (a, b, c) corresponding (b, a, c)
are non-primitive Pythagorean triples.

Proof. Let P = ku2 and Q = kv2, then by (6),(√
ku2 · kv2, ku2 − kv2

2
,
ku2 + kv2

2

)
= k ·

(
uv,

u2 − v2

2
,
u2 + v2

2

)
= k(a, b, c).

Similarly, if P = 2k
[
u+v
2

]2
and Q = 2k

[
u−v
2

]2
, then√

2k

[
u+ v

2

]2
· 2k

[
u− v

2

]2
,
2k

[
u+v
2

]2 − 2k
[
u−v
2

]2
2

,
2k

[
u+v
2

]2
+ 2k

[
u−v
2

]2
2


=

(
2k

[
u+ v

2

]
·
[
u− v

2

]
, 2k · 4uv

8
, 2k · 2u

2 + 2v2

8

)
= k ·

(
u2 − v2

2
, uv,

u2 + v2

2

)
= k(b, a, c).

□

Tables 3 and 4 below shows examples of primitive and non-primitive triples and their
co-triples generated by this method:
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u v P Q a b c k m P Q b a c

3 1 9 1 3 4 5 2 1 8 2 4 3 5
5 1 25 1 5 12 13 3 2 18 8 12 5 13
7 1 49 1 7 24 25 4 3 32 18 24 7 25
9 1 81 1 9 40 41 5 3 50 32 40 9 41

5 3 25 9 15 8 17 4 1 32 2 8 15 17
7 3 49 9 21 20 29 5 2 50 8 20 21 29
11 3 121 9 33 56 65 7 4 98 72 56 33 65
13 3 169 9 39 80 89 8 5 128 50 80 39 89

Table 3. Primitive Pythagorean Triples and their co-triples

P Q a b c P Q b a c

18 2 6 8 10 16 4 8 6 10
27 3 9 12 15 24 6 12 9 15
36 4 12 16 20 32 8 16 12 20
45 5 15 20 25 40 10 20 15 25

50 18 30 16 34 64 4 16 30 34
98 18 42 40 58 100 16 40 42 58
242 18 66 112 130 196 144 112 66 130
338 18 78 160 178 256 100 160 78 178

Table 4. Non-primitive Pythagorean Triples and their co-triples

4. Applications in Cryptography

Theorem 4.1. Primitive Pythagorean triples come in 6 classes based on the divisibility of
a, b, c by 3, 4, and 5.

Proof. 1 Class A: a is divisible by 3 and c is divisible by 5. e.g (3,4,5), (33,56,65)
2 Class B: a is divisible by 5, and b is divisible by 3. e.g (5,12,13)
3 Class C: a is divisible by 3 and 5. e.g (15,8,17), (45,28,53)
4 Class D: b is divisible by 3 and c by 5. e.g (7,24,25), (13,84,85)
5 Class E: a is divisible by 3 and b by 5. e.g (21,20,29), (9,40,41)
6 Class F: b is divisible by 3 and 5. e.g (11,60,61), (91,60,109)

□

An experiment was done where 4448 primitive Pythagorean triples were generated by
Euclid’s formula, which is limited in the Pythagorean Triples it generates, and indexed by
increasing a, b, and c respectively.
Indexed by increasing a:
ABDEFDCCDFEEDBAFFAABBDEEFDCCDFEEDBBAAFFAABBDEEFDCCDDFEDBB
AAFFFAABBDEEFDCCCCDFEEDBBAAFFFAABDEEFDDCCDFEEDDBBAA. . .
Indexed by increasing b:
ACBBAEEDDCCCDDEEAABBCCAAFFFFACCBBAAEEDDDDCCCCDDEEAABBCCAA
FFFFAACBBBBAAEEEEDDCCCCDDDDEEAABBBBCCAAFFFFAACCBBAAEEDDDD. . .
Indexed by increasing c:
ABCDEBECFAABDDEBEFCACDDEBFCFAABCDDEEFCFCDDEBEFCAABCDDBFC
AABCCEBEFFAABDDEBEFFAABBDDEECCFAACDDEBCFBCDEEECFBCDDEEBB
EFAABDDBEFCA. . .

We obtain separate sequences related to the occurrence of As, Bs, Cs, Ds, Es, and Fs by
considering the distance between occurrences of the letters. Thus in the listing by increasing
c, A occurs, after its first value, at the 10th, 11th , 20th , ... positions, which corresponds to
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the numbers 9, 1, 9, . . . . These sequences are called Baudhāyana sequences.

However, equation (6) makes it easy to generate and conveniently classify all triples into
these classes. This helps improve the randomness property of Baudhāyana sequences which
have applications in key distribution and in information hiding in the field of Cryptography.

For instance, consider the triples generated by (6) and indexed by increasing a. We obtain
the following

a b c Class
3 4 5 A
4 3 5 D
5 12 13 B
7 24 25 D
8 15 17 F
9 40 41 E
11 60 61 F
12 5 13 E
12 35 37 E
13 84 85 D
15 8 17 C
16 63 65 D
17 144 145 D
19 180 181 F
20 21 29 B
20 99 101 B
21 20 99 E
21 220 221 E
23 264 265 D
24 7 25 A
24 143 145 A

Table 5. Primitive Pythagorean Triples by increasing values of a

Thus in the listing by increasing a, A occurs, after its first value, at the 20th, 21st which
correspond to the numbers 1, 18, 1, . . . .

Similarly in the listing by increasing c, A occurs, after its first value, at the 8th, 18th which
correspond to the numbers 1, 7, 17, . . . .

Conclusion

Proposition 3.1 presents an effective way of generating all Pythagorean triples without
need for multipliers or transpositions. It is easy to determine the values of the generating
pair of integers P and Q such that (6) is a triple. If u > v are relatively prime odd positive
integers such that u2 = P and v2 = Q then P, Q are odd and (P, Q) = 1. In this case a is
odd and (a, b, c) is primitive. Similarly, if k > m are any relatively prime positive integers
such that P = 2k2 and Q = 2m2, then (P, Q) = 2. Clearly a is even and (a, b, c) is primitive.
To obtain non-primitive triples, one may use the expression n(P, Q) for n ∈ Z+.

This formula makes it easy to generate and conveniently classify triples into classes ac-
cording to divisibility by 3 or 5 or both. This helps improve the randomness property and
its application to Cryptography.
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